Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T15:04:38.520Z Has data issue: false hasContentIssue false

Silicon-Oxynitride (SiON) for Photonic Integrated Circuits

Published online by Cambridge University Press:  10 February 2011

H. W. M. Salemink
Affiliation:
IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
F. Horst
Affiliation:
IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
R. Germann
Affiliation:
IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
B. J. Offrein
Affiliation:
IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
G. L. Bona
Affiliation:
IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
Get access

Abstract

We report on the fabrication and analysis of silicon-oxynitride (SiON) as core material for silicon-based planar photonic waveguide circuits. Features of devices made of this particular SiON material are: (1) a silicon-compatible technology (low-cost perspective), (2) a waveguide structure with high dielectric index contrast, allowing a very compact device layout (approximately 10× smaller radius of curvature than conventional doped SiO2 technology), (3) a low optical loss < 0.15 dB/cm, in the 1550 nm telecommunication window and (4) a negligible polarization dependence. The materials aspects and resulting analyses of the SiON layers as well as particular device properties are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kawachi, M., Opt. and Quantum Electronics 22, 391– (1990).10.1007/BF02113964Google Scholar
[2] Li, Y.P. and Henry, C.H., IEE Proc. Optoelectronics, 143, 263– (1996).10.1049/ip-opt:19960840Google Scholar
[3] Paiam, M.R., Janz, C.F., MacDonald, R.I., Broughton, J.N., IEEE Photon. Technol. Lett. 7, 1180– (1995).10.1109/68.466583Google Scholar
[4] Offrein, B.J., Bona, G.L., Horst, F., Salemink, H.W.M., Beyeler, R., Germann, R., IEEE Photon. Technol. Lett., 11, 239– (1999).10.1109/68.740716Google Scholar
[5] Bruno, F., Guidice, M.D., Recca, R., Testa, F., Appl. Optics, 30, 4560– (1991).10.1364/AO.30.004560Google Scholar
[6] Germann, R., Salemink, H.W.M., Beyeler, R., Bona, G.L., Massarek, I., Horst, F., Offrein, B.J., Proc. of 195th Meeting of the Electrochemical Soc., Seattle, WA, May 1999; G.L. Bona, W.E. Densel, B.J. Offrein, R. Germann, H.W.M. Salemink, F. Horst, Opt. Engineering 37 3218–3228 (1998).Google Scholar
[7] de Bruijn, H.E., Kooyman, R.P.H., Greve, J., Appl. Optics 29(13) (1990).10.1364/AO.29.001974Google Scholar
[8] Horst, F., Salemink, H.W.M., Germann, R., Offrein, B.J., Bona, G.L., Proc. IEEE/LEOS Benelux Chapter, 33– (1998).Google Scholar
[9] Salemink, H.W.M., Horst, F., Offrein, B.J., Germann, R., G.L. Bona (in preparation).Google Scholar