Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T05:34:17.284Z Has data issue: false hasContentIssue false

Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications

Published online by Cambridge University Press:  10 February 2011

Anurag Jain
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Svetlana Rogojevic
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Satya V. Nitta
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Venumadhav Pisupatti
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
William N. Gill
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Peter C. Wayner Jr.
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
Joel L. Plawsky
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
T. E. F. M. Standaert
Affiliation:
Department of Physics, State University of New York at Albany, Albany, NY 12222
G. S. Oehrlein
Affiliation:
Department of Physics, State University of New York at Albany, Albany, NY 12222
Get access

Abstract

Surface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prakash, S. S., Brinker, C. J., Hurd, A. J., J Non-Cryst. Solids, 190, 264, (1995).10.1016/0022-3093(95)00024-0Google Scholar
2. Jin, C., Luttmer, J. D., Smith, D. M., Ramos, T. A., MRS Bulletin, p. 3942, Oct. (1997).10.1557/S0883769400034187Google Scholar
3. Smith, D. M., Anderson, J. Cho, C-C., Gnade, B.E., Mat. Res. Soc. Symp. Proc Ser., 371, 261, (1995).10.1557/PROC-381-261Google Scholar
4. Yang, H-S, Choi, S-Y., Hyun, S-H., Park, H-H., Hong, J-K., J. Non-Cryst. Solids, 221, 151, (1997).10.1016/S0022-3093(97)00335-9Google Scholar
5. Ramos, T., Rhoderick, K., Roth, R., Brungardt, L., Wallace, S., Drage, J. Dunne, J. Endlisch, D. Katsanes, R., Viemes, N. Smith, D. M., Mat. Res. Soc. Symp. Ser., 511, 105, (1998).10.1557/PROC-511-105Google Scholar
6. Hrubesh, L. H., and Poco, J.F., J. Non-Cryst. Solids, 188, 46, (1995).10.1016/0022-3093(95)00028-3Google Scholar
7. Jo, M-H., Park, H-H., Kim, D-J., Hyun, S-H., Choi, S-Y., Paik, J-T., J. Appl. Phys., 82, 1299, (1997).10.1063/1.365902Google Scholar
8. Jo, M-H., Hong, J-K., Park, H-H, Kim, J- J., Hyun, S-H., Choi, S-Y., Thin Solid Films, 308, 490, (1997).10.1016/S0040-6090(97)00437-9Google Scholar
9. Jin, C. List, S. Zielinski, E. Mat. Res. Soc. Symp. Ser., 511, 213, (1998).10.1557/PROC-511-213Google Scholar
10. Nitta, S. V., Pisupatti, V., Jain, A. Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., J. Vac. Sci. & Tech. B, 17(1), 205, (1999).10.1116/1.590541Google Scholar
11. Nitta, S. V., Jain, A., Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., submitted to J. Appl. Phys., (1999)Google Scholar
12. Sacks, M., Sheu, R., J. Non-Cryst. Solids, 92, 383, (1987).10.1016/S0022-3093(87)80057-1Google Scholar
13. Lawrence, C. J., Zhou, W., J. Non-Newtonian Flu. Mech., 39, 137, (1991).10.1016/0377-0257(91)80010-HGoogle Scholar
14. Acrivos, A., Shah, M. J., Peterson, E. E., J. Appl. Phys., 31, 963, (1960).10.1063/1.1735785Google Scholar
15. Jenekhe, S. A., Schuldt, S. B., Ind Eng. Chem. Fundam., 23, 432, (1984).10.1021/i100016a009Google Scholar
16. Emslie, A. G., Bonner, T., and Peck, L. G., J. Appl. Phys., 29, 858, (1958).10.1063/1.1723300Google Scholar
17. Shaffer, E. O., Mills, M. E., Hawn, D., Van Gestel, M., Knorr, A., Gundlach, H., Kumar, K., Kaloyeros, A. E., Geer, R. E., Mat. Res. Soc. Symp. Ser., 511, 133, (1998).10.1557/PROC-511-133Google Scholar
18. Shaffer, E. O., McGarry, F. J., Hoang, L., Polym. Sci. & Eng., 36(18), 2375, (1996).10.1002/pen.10635Google Scholar
19. Shaffer, E. O., Townsend, P. H., Im, J-hi, Conf Proc. ULSI XII, 429, (1997).Google Scholar
20. Nitta, S. V., Jain, A., Pisupatti, V., Wayner, P. C. Jr., Gill, W. N., Plawsky, J. L., Mat. Res. Soc. Symp. Ser., 511, 99, (1998).10.1557/PROC-511-99Google Scholar
21. Brinker, C. J., and Scherer, G.W., Sol-Gel Science, Academic Press, New York, (1990).Google Scholar
22. Hrubesh, L.W., Keene, L.E., Lattore, V.R. Mat. Res., 8(7), 736, (1993).Google Scholar
23. Brüesch, P., Stucki, F., Baumann, Th., K-Weiss, P., Brül, B., Niemeyer, L., Strümpler, R., Mielke, M., Appl. Phys. A, Solids Surf 57, 329, (1993).10.1007/BF00332286Google Scholar
24. Birdsell, E. D., Gerhardt, R. A., Mat. Res. Soc. Symp. Ser., 511, 111, (1998)10.1557/PROC-511-111Google Scholar
25. Bakhru, H.; Kumar, A., Kaplan, T., Delarosa, M., Fortin, J., Yang, G.-R., Lu, T.-M., Kim, S., Steinbruchel, C., Tang, X., Moore, J. A., Wang, B., McDonald, J., Nitta, S., Pisupatti, V., Jain, A., Wayner, P., Plawsky, J., Gill, W. N., Jin, C., Mat. Res. Soc. Symp. Ser., 511, 125, (1998).10.1557/PROC-511-125Google Scholar
26. Jo, M-H., Park, H-H., Appl. Phys. Lett., 72(11), 1391, (1998).10.1063/1.121065Google Scholar
27. Sauerbrey, G. Z. fur Physik, 155, 206222 (1959).10.1007/BF01337937Google Scholar
28. MacBrayer, J. D., Swanson, R.M., and Sigmon, T.W., J. Electrochem. Soc, 133, 1424, (1986).Google Scholar
29. Raghavan, G., Chiang, C., Anders, P. B., Tzeng, S., Villasol, R., Bai, G., Bohr, M. and Fraser, D. B., Thin Solid Films, 262, 168, (1995).10.1016/0040-6090(95)05839-7Google Scholar
30. Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D., Oldham, W.G., J. Electrochem. Soc, 140, 2427, (1993).10.1149/1.2220837Google Scholar
31. Gupta, D. Mat. Chem. and Phys., 41, 199, (1995).10.1016/0254-0584(95)01514-0Google Scholar
32. Standaert, T. E. F. M., Matsuo, P. J., Allen, S. D., Oehrlein, G. S, Dalton, T. J., Lu, T. M., Gutmann, R., Mat. Res. Soc. Symp. Ser., 511, 265, (1998).10.1557/PROC-511-265Google Scholar
33. Standaert, T. E. F. M., Schaepkens, M., Rueger, N. R. Sebel, P. G. M., Oehrlein, G. S., Cook, J. M., J. Vac. Sci. & Tech A, 16(1), 239, (1998).10.1116/1.580978Google Scholar
34. Rueger, N. R., Beulens, J. J., Schaepkens, M., Doemling, M. F., Mirza, J. M., Standaert, T. E. F. M., Oehrlein, G. S., J. Vac. Sci. & Tech. B, 15(4), 1881, (1997).10.1116/1.580655Google Scholar