Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T20:33:41.119Z Has data issue: false hasContentIssue false

Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy

Published online by Cambridge University Press:  01 February 2011

S. G. Chou
Affiliation:
Department of Chemistry, Cambridge, MA 02139–4307
F. Plentz
Affiliation:
Depto. Fisica, Universidade Federal Minas Gerais, Belo Horizonte-MG, 30123–970 Brazil
J. Jiang
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai, 980–8578, Japan
R. Saito
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai, 980–8578, Japan
D. Nezich
Affiliation:
Department of Physics, Cambridge, MA 02139–4307
H. B. Ribeiro
Affiliation:
Depto. Fisica, Universidade Federal Minas Gerais, Belo Horizonte-MG, 30123–970 Brazil
A. Jorio
Affiliation:
Depto. Fisica, Universidade Federal Minas Gerais, Belo Horizonte-MG, 30123–970 Brazil
M. A. Pimenta
Affiliation:
Depto. Fisica, Universidade Federal Minas Gerais, Belo Horizonte-MG, 30123–970 Brazil
Ge. G. Samsonidze
Affiliation:
Department of Electrical Engineering and Computer Science, Cambridge, MA 02139–4307
A. P. Santos
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte-MG, Brazil
M. Zheng
Affiliation:
DuPont, Central Research and Development, Experimental Station, Wilmington, DE19880–0328
G. B. Onoa
Affiliation:
DuPont, Central Research and Development, Experimental Station, Wilmington, DE19880–0328
E. D. Semke
Affiliation:
DuPont, Central Research and Development, Experimental Station, Wilmington, DE19880–0328
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139–4307
M. S. Dresselhaus
Affiliation:
Department of Physics, Cambridge, MA 02139–4307 Department of Electrical Engineering and Computer Science, Cambridge, MA 02139–4307
Get access

Abstract

We present a detailed photoluminescence study of a (6, 5) enriched DNA-wrapped single wall carbon nanotube (DNA-CNT) solid sample and an as-produced DNA-CNT solution. Multiple strong PL peaks were observed at excitation energies that do not correspond to the interband electronic transitions that are strongly enhanced by electronic van Hove singularities. These strong PL peaks are assigned to different mechanisms of excitation and relaxation, including one phonon, two phonon, hot luminescence processes, as well as radiative and non-radiative energy transferring mechanisms between neighboring nanotubes. These processes are assigned to different channels of phonon-assisted electron relaxation. The study shows that the electronic relaxation processes observed in PL can be used as a means to probe different physical interactions between photons, electrons, and phonons that are not separately identified in bulk semiconducting materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Heitz, R. et al. Phys. Rev. B. 64, 241305(R) (2001)Google Scholar
[2] Heitz, R. et al. Phys. Rev. B, 56, 10435 (1997)Google Scholar
[3] Benisty, H. et al., Phys. Rev. B. 51, 13281 (1995)Google Scholar
[4] Moehl, S. et al., J. Appl. Phys. 93, 6265 (2003)Google Scholar
[5] Zhao, H. et al., Phys. Rev. B. 66, 08533 (2002).Google Scholar
[6] Zhao, H. et al., Appl. Phys. Lett. 80, 1391 (2002)Google Scholar
[7] O'Connell, M. et al., Science. 297, 593 (2002).Google Scholar
[8] Bachilo, S. M. et al., Science. 298, 2361 (2002).Google Scholar
[9] Zheng, M. et al., Nature Materials. 2, 338 (2003).Google Scholar
[10] Zheng, M. et al., Science. 302, 1545 (2003).Google Scholar
[11] Strano, M. S., J. Am. Chem. Soc. 125, 16148 (2004).Google Scholar
[12] Strano, M. S., Nano Letters. 4, 543 (2004).Google Scholar
[13] Miyauchi, Y. et al., Chem. Phys. Lett. 387, 198 (2004).Google Scholar
[14] Lefebvre, J. et al., Appl. Phys. A. 78, 1107 (2004).Google Scholar
[15] Lefebvre, J. et al., Phys. Rev. B. 69, 075403 (2004).Google Scholar
[16] Bachilo, S. et al., J. Am. Chem. Soc., 125, 11186 (2003).Google Scholar
[17] Chou, S. et al., Chem. Phys. Lett. 397, 296 (2004).Google Scholar
[18] Jiang, J. et al., Phys. Rev. B. in press (2004).Google Scholar
[19] Wang, F. et al. (submitted, 2004)Google Scholar
[20] Resasco, D. et al., J. Nanopart. Res. 4, 131 (2002).Google Scholar
[21] Zheng, M. et al. J. Am. Chem. Soc. In press (2004).Google Scholar
[22] Chou, S. et al. (submitted, 2004)Google Scholar
[23] Thomsen, C. et al., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
[24] Martin, R. M. and Falicov, L. M., Light Scattering in Solids I: edited by Cardona, M. volume 8, pp 79145, Springer-Verlag, Berlin, 1983, Chapter 3, Topics in Applied Physics.Google Scholar
[25] Maultzsch, J. et al., Phys. Rev. Lett. 92, 075501 (2004).Google Scholar
[26] Stryer, L. and Haugland, R., Proc Natl Acad Sci USA 58, 719 (1967).Google Scholar