Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-20T00:45:08.554Z Has data issue: false hasContentIssue false

Zinc oxide nanocluster formation by low energy ion implantation

Published online by Cambridge University Press:  26 February 2011

I. Muntele
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, NORMAL AL-35762, USA
P. Thevenard
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, NORMAL AL-35762, USA LPMCN, UMR CNRS 5586, Universite Claude Bernard LYON, 699622 VILLEURBANNE Cedex, FRANCE
C. Muntele
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, NORMAL AL-35762, USA
B. Chhay
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, NORMAL AL-35762, USA
D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, NORMAL AL-35762, USA
Get access

Abstract

Variable size nanocluster embedded in silicon substrate were obtained by low energy implantation methods. We used optical spectroscopy to measure the optical properties of the implanted samples. The implantation parameters like the ions energy, dose and sputtering rate were calculated with SRIM [13]. Most of the implanted Zn ions (83%) clustered and oxidized during the implantation process, with the remaining 17% being oxidized during annealing in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gordon, R.G., in NREL/SNL Photovoltaics Program Review edited by Holt, S.S. and Murray, L.G., AIP Conf. Proc. No. 394 (AIP, Woodbury, NY, 1997), p.39.Google Scholar
2. Lee, C., Kim, K., Song, J.: Solar Energy Mater. Sol. Cells 43 (1996) 37.Google Scholar
3. Park, C.H., Zhang, S.B., Wei, Su-Huai: Phys.Rev. B 66 (2002) 073202.Google Scholar
4. Yamamoto, T.: Jpn. J. Appl. Phys. 42 (2003) L514.Google Scholar
5. Kim, K.K., Kim, H.S., Hwang, D.K., Lim, J.H., Park, S.J.: Appl. Phys. Lett. 83 (2003) 63.Google Scholar
6. Ronning, C., Gao, P.X., Ding, Y., Wang, Z.L., Schwen, D.: Appl. Phys. Lett. 84 (2004) 783.Google Scholar
7. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J., Boatner, L.A.: J. Appl. Phys. 93 (2003) 1.Google Scholar
8. Norton, D.P., Budai, J.D., Boatner, L.A., Lee, J.S., Khim, Z.G., Park, Y.D., Overberg, M.E., Pearton, S.J., Wilson, R.G.: Appl. Phys. Lett. 83 (2003) 5488.Google Scholar
9. Liu, Y.C., Xu, H.Y., Mu, R., Henderson, D.O., Lu, Y.M., Zhang, J.Y., Shen, D.Z., Fan, X. W., White, C.W.: Appl. Phys. Lett. 83 (2003) 1210.Google Scholar
10. Kim, K.K., Koguchi, N., Ok, Y.W., Seong, T.Y., Park, S.J.: Appl. Phys. Lett. 84 (2004) 3810.Google Scholar
11. Wu, H.Z., Qiu, D.J., Cai, Y.J., Xu, X.L., Chen, N.B.: J. Cryst. Growth. 245 (2002) 50.Google Scholar
12. Brus, L.E.: J. Chem. Phys. 80 (1984) 4403.Google Scholar
13. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, 1985.Google Scholar