Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T15:51:49.724Z Has data issue: false hasContentIssue false

Waveguiding, Microcavity Effects and Optically Pumped Lasing in Single Melt Processed Polyfluorene Nanowires

Published online by Cambridge University Press:  26 February 2011

Deirdre O'Carroll
Affiliation:
deirdre.ocarroll@tyndall.ie, Tyndall National Institute, Nanotechnology Group, Lee Maltings,, Prospect Row, Cork, -, Ireland
Gareth Redmond
Affiliation:
gareth.redmond@tyndall.ie, Tyndall National Institute, Nanotechnology Group, Lee Maltings,, Prospect Row, Cork, ,, Ireland
Get access

Abstract

The synthesis of poly(9,9-dioctylfluorene) conjugated polymer nanowires using the method of melt-assisted wetting of nanoporous alumina membrane templates is reported. Polymer nanowires exhibiting blue photoluminescence emission with diameters of approx. 300 nm are obtained. Absorption and photoluminescence spectra of nanowire mats indicate that the nanowires consist of the semi-crystalline form of the polymer. Single wires exhibit active waveguide behavior whereby excited luminescence propagates towards and out-couples at the tips of the nanowires. Spectra of out-coupled emission exhibit multiple modes with mode spacing corresponding to longitudinal Fabry-Pérot cavities of equivalent lengths to those of the nanowires. Above a threshold incident pump energy spectral collapse to a single blue shifted peak with instrument limited line width occurs characteristic of single mode lasing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sirbuly, D. J., Law, M.; Yan, H., Yang, P., J. Phys. Chem. B 109, 15190 (2005).Google Scholar
2. Xia, R., Heliotis, G., Hou, Y., Bradley, D.D.C., Org. Electron. 4, 165 (2003).Google Scholar
3. Grell, M., Bradley, D.D.C., Ungar, G., Hill, J., Whitehead, K.S., Macromolecules 32, 5810, (1999).Google Scholar
4. Steinhart, M., Wendorff, J.H., Greiner, A., Wehrspohn, R.B., Nielsch, K., Schilling, J., Choi, J., Gösele, U., Science 296, 1997 (2002).Google Scholar
5. Sims, M., Bradley, D.D.C., Ariu, M., Koeberg, M., Asimakis, A., Grell, M., Lidzey, D.G., Adv. Funct. Mater. 14, 765 (2004).Google Scholar
6. An extinction coefficient, kǁ = 1.9 (at 385 nm) [7] and n = 1.616 (at 1500 nm) obtained from prism coupler measurements of PFO thin films were used to extract absolute values for the dispersion of n for the PFO nanowires from the Kramers-Kronig transformation.Google Scholar
7. Campoy-Quiles, M., Etchegoin, P.G., Bradley, D.D.C., Phys. Rev. B 72, 045209 (2005).Google Scholar
8. Hide, F., Schwartz, B.J., Díaz-García, M.A., Heeger, A.J., Synthetic Met. 91, 35 (1997).Google Scholar
9. Tessler, N., Denton, G.J., Friend, R.H., Nature 382, 695 (1996).Google Scholar
10. Virgili, T., Lidzey, D.G., Bradley, D.D.C., Cerullo, G., Stagira, S., De Silvestri, S., Appl. Phys. Lett. 74, 2767 (1999).Google Scholar