Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T03:28:32.670Z Has data issue: false hasContentIssue false

Transportation of Na and Li in Hydrothermally Grown ZnO

Published online by Cambridge University Press:  31 January 2011

Pekka Tapio Neuvonen
Affiliation:
p.t.neuvonen@smn.uio.no, University of Oslo, Centre for Material Science and Nanotechnology, Department of Physics, Oslo, Norway
Lasse Vines
Affiliation:
lasse.vines@fys.uio.no, University of Oslo, Centre for Material Science and Nanotechnology, Department of Physics, Oslo, Norway
Klaus Magnus Johansen
Affiliation:
k.m.h.johansen@fys.uio.no, University of Oslo, Centre for Material Science and Nanotechnology, Department of Physics, Oslo, Norway
Anders Hallén
Affiliation:
Anders.Hallen@angstrom.uu.se, Royal Institute of Technology, School of ICT, Department of Microelectronics and Applied Physics, Kista, Sweden
Bengt Gunnar Svensson
Affiliation:
b.g.svensson@fys.uio.no, University of Oslo, Centre for Material Science and Nanotechnology, Department of Physics, Oslo, Norway
Andrej Yu. Kuznetsov
Affiliation:
andrej.kuznetsov@fys.uio.no, University of Oslo, Centre for Material Science and Nanotechnology, Department of Physics, Oslo, Norway
Get access

Abstract

Secondary ion mass spectrometry has been applied to study the transportation of Na and Li in hydrothermally grown ZnO. A dose of 1015 cm-2 of Na+ was implanted into ZnO to act as a diffusion source. A clear trap limited diffusion is observed at temperatures above 550 °C. From these profiles, an activation energy for the transport of Na of ∼1.7 eV has been extracted. The prefactor for the diffusion constant and the solid solubility of Na cannot be deduced independently from the present data but their product estimated to be ∼3 × 1016 cm-1s-1. A dissociation energy of ∼2.4 eV is extracted for the trapped Na. The measured Na and Li profiles show that Li and Na compete for the same traps and interact in a way that Li is depleted from Na-rich regions. This is attributed to a lower formation energy of Na-on-zinc-site than that for Li-on-zinc-site defects and the zinc vacancy is considered as a major trap for migrating Na and Li atoms. Consequently, the diffusivity of Li is difficult to extract accurately from the present data, but in its interstitial configuration Li is indeed highly mobile having a diffusivity in excess of 10-11 cm2s-1 at 500 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thomas, D. G., J. Phys. Chem. Solids 15, 86 (1960).10.1016/0022-3697(60)90104-9Google Scholar
2 Ryu, Y. R., Lee, T. S., Lubguba, J. A., White, H. W., Park, Y. S. and Youn, C. J., Appl. Phys. Lett. 87, 153504 (2005).10.1063/1.2089176Google Scholar
3 Tsukazaki, A., Kubota, M., Ohtomo, A., Onuma, T., Ohtani, K., Ohno, H., Chichibu, S. F. and Kawasaki, M., Jpn. J. Appl. Phys. 44, L643 (2005).10.1143/JJAP.44.L643Google Scholar
4 Harrison, S. E., Phys. Rev. 93, 52 (1954).10.1103/PhysRev.93.52Google Scholar
5 Hutson, A. R., Phys. Rev. 108, 222 (1957).10.1103/PhysRev.108.222Google Scholar
6 Kohan, A. F., Ceder, G., Morgan, D. and Walle, C. G. Van de, Phys. Rev. B 61, 15019 (2000).10.1103/PhysRevB.61.15019Google Scholar
7 Janotti, A. and Walle, C. G. Van de, Phys. Rev. B 76, 165202 (2007).10.1103/PhysRevB.76.165202Google Scholar
8 Cox, S. F. J., Davis, E. A., Cottrell, S. P., King, P. J. C., Lord, J. S., Gil, J. M., Alberto, H. V., Vilão, R. C., Duarte, J. Porto, Campos, N. Ayres de, Weidinger, A., Lichti, R. L. and Irvine, S. J. C., Phys. Rev. Lett. 86, 2601 (2001).10.1103/PhysRevLett.86.2601Google Scholar
9 Monakhov, E. V., Kuznetsov, A. Yu. and Svensson, B. G., J. Phys. D 42, 153001 (2009).10.1088/0022-3727/42/15/153001Google Scholar
10 Wardle, M. G., Goss, J. P. and Briddon, P. R., Phys. Rev. B 71, 155205 (2005).10.1103/PhysRevB.71.155205Google Scholar
11 Neuvonen, P. T., Vines, L., Kuznetsov, A. Yu., Svensson, B. G., Du, X. L., Tuomisto, F. and Hallén, A., Appl. Phys. Lett. 95, 242111 (2009).10.1063/1.3270107Google Scholar
12 Tuomisto, F., Zubiaga, A., Kuitunen, K., Neuvonen, P. T., Kuznetsov, A. Yu., Svensson, B. G., MRS09 Fall Meeting, H2.2 (2009)Google Scholar
13 Johansen, K. M., Christensen, J. S., Monakhov, E. V., Kuznetsov, A. Yu. and Svensson, B. G., Appl. Phys. Lett. 93, 152109 (2008).10.1063/1.3001605Google Scholar
14 Janson, M. S., Linnarsson, M. K., Hallén, A. and Svensson, B. G., Phys. Rev. B 64, 195202 (2001).10.1103/PhysRevB.64.195202Google Scholar
15 Neuvonen, et al., to be publishedGoogle Scholar
16 Halliburton, L. E., Wang, L., Bai, L., Garces, N. Y., Giles, N. C., Callahan, M. J. and Wang, B., J. Appl. Phys. 96, 7168 (2004).10.1063/1.1806531Google Scholar