Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:08:36.865Z Has data issue: false hasContentIssue false

Opto-microwave experimental mapping of SiGe/Si phototransistors at 850 nm

Published online by Cambridge University Press:  07 January 2010

Marc D. Rosales
Affiliation:
Université Paris Est – ESYCOM – ESIEE Paris, Cité Descartes, BP 99, 93162 Noisy-le-Grand, France.
François Duport
Affiliation:
Université Paris Est – ESYCOM – ESIEE Paris, Cité Descartes, BP 99, 93162 Noisy-le-Grand, France.
Julien Schiellein
Affiliation:
Université Paris Est – ESYCOM – ESIEE Paris, Cité Descartes, BP 99, 93162 Noisy-le-Grand, France.
Jean-Luc Polleux*
Affiliation:
Université Paris Est – ESYCOM – ESIEE Paris, Cité Descartes, BP 99, 93162 Noisy-le-Grand, France.
Catherine Algani
Affiliation:
CNAM – ESYCOM, 292 rue Saint Martin, Paris, France.
Christian Rumelhard
Affiliation:
CNAM – ESYCOM, 292 rue Saint Martin, Paris, France.
*
Corresponding author: J.L. Polleux Email: jl.polleux@esiee.fr

Abstract

This paper presents measurement results providing the mapping of the opto-microwave transfer function performed on an SiGe microwave heterojunction phototransistor (HPT). This measurements will be used to extract a guideline for designing phototransistors. A mapping of the HPT's gain in low frequency helps to estimate the shape of the optical beam used for the measurement. The study also focuses on the cutoff frequency mapping of the device in phototransistor mode. Finally, these results are used to determine the general optimization rules in the SiGe HPTs design.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Polleux, J.L. et al. : A strained SiGe layer heterjunction bipolar transistor for short range opto-microwave applications, in IEEE Int. Topical Meeting on Microwave Photonics, MWP2003, Budapest, Hungary, 2003.Google Scholar
[2]Pei, Z. et al. : Bandwidth enhancement in an integratable SiGe phototransistor by removal of excess carriers. IEEE Electron Device Lett., 25 (5) (2004), 286288.CrossRefGoogle Scholar
[3]Polleux, J.L. et al. : An heterojunction SiGe/Si phototransistor for opto-microwave applications: modelling and first experimental results, in GAAS Conf. of the EuMW 2003, Munich, 2003.Google Scholar
[4]Yin, T. et al. : Low-cost, high efficiency and high-speed SiGe phototransistors in commercial BiCMOS. IEEE Photonics Technol. Lett., 18 (1) (2006).Google Scholar
[5]Egels, M. et al. : Design of an optically frequency or phase-controlled oscillator for hybrid fiber-radio LAN at 5.2 GHz. Microwave Opt. Technol. Lett., 45 (2) (2005), 104107.CrossRefGoogle Scholar
[6]Moutier, F.: Modélisation et Évaluation des Performances des Phototransistors Bipolaires à Hétérojonction SiGe/Si pour les Applications Optique-microondes Courtes Distances, Ph.D. thesis, Université de Marne la Vallée, 2006.Google Scholar
[7]Moutier, F.; Polleux, J.L.; Rumelhard, C.; Schumacher, H.: Frequency response enhancement of a single strained layer SiGe phototransistor based on physical simulations. GAAS Conf. of the European Microwave Week 2005, Paris, France, 2005.Google Scholar
[8]Helme, J.P.; Houston, P.A.: Analytical modeling of speed response of heterojunction bipolar phototransistors. IEEE J. Lightwave Technol., 25 (5) (2007), 12471255.CrossRefGoogle Scholar
[9]Polleux, J.L. et al. : Optimization of InP/InGaAs HPT's gain: design and realization of an opto-microwave monolithic amplifier. IEEE Trans. Microwave Theory Tech., 52 (3) (2004), 871881.CrossRefGoogle Scholar
[10]Yuan, F. et al. : MEXTRAM modeling of Si-SiGe HPTs. IEEE Trans. Electron Devices, 51 (6), 2004, 870876.CrossRefGoogle Scholar
[11]Polleux, J.L.; Rumelhard, C.: Optical absorption coefficient determination and physical modelling of strained SiGe/Si photodetectors. IEEE EDMO 2000 Proc., Glasgow, Scotland, 2000, pp. 167172.Google Scholar