Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T09:07:39.069Z Has data issue: false hasContentIssue false

Agro-morphological variability of rice species collected from Niger

Published online by Cambridge University Press:  18 July 2013

Mounirou Sow
Affiliation:
Africa Rice Center (AfricaRice), 01 BP 2031, Cotonou, Benin
Amir Sido
Affiliation:
Institut National de la Recherche Agronomique du Niger (INRAN), BP429, Niamey, Niger
Mark Laing
Affiliation:
Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (UKZN), 1 Carbis Road, Scottsville, Pietermaritzburg3201, South Africa
Marie-Noelle Ndjiondjop*
Affiliation:
Africa Rice Center (AfricaRice), 01 BP 2031, Cotonou, Benin
*
*Corresponding author. E-mail: m.ndjiondjop@cgiar.org

Abstract

Niger harbours a wealth of diversity of Africa's rice (Oryza glaberrima) and its related wild species. We therefore engaged in a collecting mission of rice species across growing regions and agrosystems in Niger. A total of 270 rice accessions were assembled, including 177 Asian rice (O. sativa) cultivars, 67 African rice landraces (O.glaberrima), 25 O. barthii and one O.longistaminata. We found most accessions (80.7%) along the Niger River and its tributary the Dallol Maouri. Many of the accessions, except those belonging to the wild O. barthii initially found around the Lake Chad region, were also collected along the Niger River. Drought, insects, birds, rice yellow mottle virus and bacterial blight were noted as major constraints on rice production. Accession naming by farmers was consistent within regions but seldom across regions. Based on the recorded agro-morphological traits, the germplasm was classified into three clusters: (1) O. longistaminata with floating African landraces and late-maturing floating Asian rice; (2) lowland O.barthii and African landraces; (3) a mixture of irrigated Asian rice with lowland accessions of both cultivated species. The phenotypic variability of the germplasm collection, as measured by the Shannon–Weaver diversity index, was relatively high (H′ = 0.69), with accessions in the irrigated agrosystem being less diverse than those in the traditional agrosystems. There was no significant difference in the magnitude of diversity between the main eco-geographical zones and between the clusters. However, some traits contributing the most to this diversity were different. This study suggested a substantial germplasm exchange between regions in Niger.

Type
Research Article
Copyright
Copyright © NIAB 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, A, Bekele, E, Asfaw, Z and Teshome, A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137: 161172.CrossRefGoogle Scholar
Akimoto, M, Shimamoto, Y and Morishima, H (1999) The extinction of genetic resources of Asian wild rice, Oryzarufipogon Griff.: a case study in Thailand. Genetic Resources and Crop Evolution 46: 419425.CrossRefGoogle Scholar
Akpokodje, G, Frederic, L and Erenstein, O (2001) Nigeria's Rice Economy: State of the Art. Bouake: West Africa Rice Development Association.Google Scholar
Aladejana, F and Faluyi, JO (2007) Agrobotanical characteristics of some West African indigenous species of the genome complex of the genus Oryza Lin. International Journal of Botany 3: 229239.CrossRefGoogle Scholar
Balasubramanian, V, Sie, M, Hijmans, RJ and Otsuka, K (2007) Increasing rice production in sub-Saharan Africa: challenges and opportunities. Advances in Agronomy 94: 55133.CrossRefGoogle Scholar
Barry, MB, Pham, JL, Billot, C, Courtois, B and Ahmadi, N (2007) Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in maritime Guinea. Evidence for interspecific recombination. Euphytica 154: 127137.CrossRefGoogle Scholar
Basso, A, Souley, I, Adamou, H, Sere, Y and Halidou, A (2010) Biologic characterization of the Rice yellow mottle virus isolates in Niger. Annales de l'Université Abdou Moumouni XI-A: 112119.Google Scholar
Becker, M and Johnson, DE (2001) Cropping intensity effects on upland rice yield and sustainability in West Africa. Nutrient Cycling in Agroecosystems 59: 107117.CrossRefGoogle Scholar
Besancon, G (1993) Le Riz Cultivé d'origine Africaine Oryza glaberrima Steud. et les Formes Sauvages et Adventices Apparentées: Diversité, Relations Génétiques et Domestication, Collection Travaux et Documents Microédités. Paris: ORSTOM.Google Scholar
Bezançon, G, Bozza, J, Koffi, G and Second, G (1977) Diversité génétique d' O. glaberrima et O. breviligulata en observation directe et par electrophorèse d'isozymes. In: Meeting on African Rice Species. Paris: IRAT-ORSTOM, pp. 1546.Google Scholar
Bioversity International, IRRI, WARDA. (2007) Descriptors for Wild and Cultivated Rice (Oryza spp.). Rome/Los Baños/Cotonou: Bioversity International/Philippines International Rice Research Institute/West Africa Rice Development Association.Google Scholar
Bonkoula, A and Miezan, K (1982) Collecte des Riz au Niger (Régions de Sinder et Kollo). Rapport de mission. Abidjan: ORSTOM.Google Scholar
Chang, TT (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25: 425441.CrossRefGoogle Scholar
Chang, TT (1984) Conservation of rice genetic resources: luxury or necessity? Science 224: 251256.CrossRefGoogle ScholarPubMed
Chang, TT, Marciano, AP and Loresto, GC (1977) Morpho-agronomic variousness and economic potentials of Oryza glaberrima and wild species in the genus Oryza . In: Meeting on African Rice Species. Paris: IRAT-ORSTOM, pp. 6776.Google Scholar
Chen, LJ, Lee, DS, Song, ZP, Suh, HS and Lu, B-R (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93: 6773.CrossRefGoogle ScholarPubMed
Courtois, B, McLaren, G, Sinha, PK, Prasad, K, Yadav, R and Shen, L (2000) Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding 6: 5566.CrossRefGoogle Scholar
DREF(2010) Niger: Food Insecurity. Geneva: The International Federation's Disaster Relief Emergency Fund.Google Scholar
Garris, A, Tai, T, Coburn, J, Kresovich, S and McCouch, SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169: 16311638.CrossRefGoogle ScholarPubMed
Glaszmann, JC (1987) Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics 74: 2130.CrossRefGoogle ScholarPubMed
Harlan, JR (1975) Geographic patterns of variation in some cultivated plants. Journal of Heredity 66: 182191.CrossRefGoogle Scholar
Khush, GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology 35: 2534.CrossRefGoogle ScholarPubMed
Kovach, MJ, Sweeney, MT and McCouch, SR (2007) New insights into the history of rice domestication. Trends in Genetics 23: 578587.CrossRefGoogle ScholarPubMed
Lasa, JM, Igartua, E, Ciudad, FJ, Codesal, P, García, EV, Gracia, MP, Medina, B, Romagosa, I, Molina-Cano, JL and Montoya, JL (2001) Morphological and agronomical diversity patterns in the Spanish barley core collection. Hereditas 135: 217225.CrossRefGoogle ScholarPubMed
Linares, OF (2002) African rice (Oryza glaberrima): history and future potential. Proceedings of the National Academy of Sciences (USA) 99: 1636016365.CrossRefGoogle ScholarPubMed
Manickavelu, A, Nadarajan, N, Ganesh, S, Gnanamalar, R and Chandra Babu, R (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regulation 50: 121138.CrossRefGoogle Scholar
McCouch, S, Sweeney, M, Li, J, Jiang, H, Thomson, M, Septiningsih, E, Edwards, J, Moncada, P, Xiao, J, Garris, A, Tai, T, Martinez, C, Tohme, J, Sugiono, M, McClung, A, Yuan, L and Ahn, S-N (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa . Euphytica 154: 317339.CrossRefGoogle Scholar
Nuijten, E and Almekinders, C (2008) Mechanisms explaining variety naming by farmers and name consistency of rice varieties in the Gambia. Economic Botany 62: 148160.CrossRefGoogle Scholar
Nuijten, E, van Treuren, R, Struik, PC, Mokuwa, A, Okry, F, Teeken, B and Richards, P (2009) Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers' fields. PLoS ONE 4: e7335.CrossRefGoogle ScholarPubMed
Oka, H (1977) The ancestors of cultivated rice and their evolution. In: Meeting on African Rice Species. Paris: IRAT-ORSTOM, pp. 5764.Google Scholar
Portères, R (1956) Taxonomie agrobotanique des riz cultivés O. sativa L. et O. glaberrima Steud. Journal d'Agriculture Tropical et de Botanique Appliquées 3: 341856.CrossRefGoogle Scholar
Sanni, K, Fawole, I, Guei, R, Ojo, D, Somado, E, Tia, D, Ogunbayo, S and Sanchez, I (2008) Geographical patterns of phenotypic diversity in Oryza sativa landraces of Côte d'Ivoire. Euphytica 160: 389400.CrossRefGoogle Scholar
Sarla, N and Mallikarjuna Swamy, BP (2005) Oryza glaberrima: a source for the improvement of Oryza sativa . Current Science 89: 955963.Google Scholar
Second, G (1985) Relations Évolutives chez le Genre Oryza et processus de Domestication des Riz. Paris: ORSTOM.Google Scholar
Second, G, Bezançon, G and Bozza, J (1977) Variabilité d'Oryza longistaminata et du complexe sativa des Oryza en Afrique: aspects ecologiques et evolutifs. In: Meeting on African Rice Species. Paris: IRAT-ORSTOM, pp. 4755.Google Scholar
Semon, M, Nielsen, R, Jones, M and McCouch, S (2005) The population structure of African cultivated rice (Oryza glaberrima (Steud.): evidence for elevated levels of LD caused by admixture with O. sativa and ecological adaptation. Genetics 169: 16391647.CrossRefGoogle Scholar
Shannon, CE (1948) A mathematical theory of communication. Bell System Technical Journal 27: 379423 (623–656).CrossRefGoogle Scholar
Sié, M, Zongo, J-D and Dakouo, D (1998) Prospection des cuItivarstraditionnels de riz du Burkina Faso. Revue CAMES, Sciences et Medecine 00: 2127.Google Scholar
Thomson, MJ, Tai, TH, McClung, AM, Lai, X-H, Hinga, ME, Lobos, KB, Xu, Y, Martinez, CP, McCouch, SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics 107: 479493.CrossRefGoogle Scholar
Vaughan, DA, Morishima, H and Kadowaki, K (2003) Diversity in the Oryza genus. Current Opinion in Plant Biology 6: 139146.CrossRefGoogle ScholarPubMed
Ward, JH Jr (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236244.CrossRefGoogle Scholar
World Bank(2010) On a Grant under the Global Food Crisis Response Program in the Amount of US$ 7 million to the Republic of Niger for the Emergency Food Security Support Project. Implementation, Completion and Results Report. Washington, DC: The World Bank.Google Scholar
Yue, B, Xue, W, Xiong, L, Yu, X, Luo, L, Cui, K, Jin, D, Xing, Y and Zhang, Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172: 12131228.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sow Supplementary Material

Appendix

Download Sow Supplementary Material(File)
File 1.3 MB