Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T05:03:46.661Z Has data issue: false hasContentIssue false

ASYMPTOTIC TORSION AND TOEPLITZ OPERATORS

Published online by Cambridge University Press:  11 June 2015

Jean-Michel Bismut
Affiliation:
Département de Mathématique, Université Paris-Sud, Bâtiment 425, F-91405 Orsay, France (Jean-Michel.Bismut@math.u-psud.fr)
Xiaonan Ma
Affiliation:
Université Paris 7, UFR de Mathématiques, Case 7012, F-75205 Paris Cedex 13, France (xiaonan.ma@imj-prg.fr)
Weiping Zhang
Affiliation:
Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, PR China (weiping@nankai.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use Toeplitz operators to evaluate the leading term in the asymptotics of the analytic torsion forms associated with a family of flat vector bundles $F_{p}$ . For $p\in \mathbf{N}$ , the flat vector bundle $F_{p}$ is the direct image of $L^{p}$ , where $L$ is a holomorphic positive line bundle on the fibres of a flat fibration by compact Kähler manifolds. The leading term of the analytic torsion forms is the integral along the fibre of a locally defined differential form.

Type
Research Article
Copyright
© Cambridge University Press 2015 

References

Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras, in Colloque ‘Analyse et Topologie’ en l’Honneur de Henri Cartan (Orsay, 1974), Astérisque, 32–33, pp. 4372 (Soc. Math. France, Paris, 1976), MR 0420729 (54 #8741).Google Scholar
Berezin, F. A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 11161175, MR 0395610 (52 #16404).Google Scholar
Bergeron, N. and Venkatesh, A., The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12(2) (2013), 391447, MR 3028790.CrossRefGoogle Scholar
Berline, N., Getzler, E. and Vergne, M., Heat kernels and Dirac operators, in Grundl. Math. Wiss. Band 298 (Springer, Berlin, 1992), MR 94e:58130.Google Scholar
Berline, N. and Vergne, M., Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50(2) (1983), 539549, MR 84i:58114.CrossRefGoogle Scholar
Berthomieu, A. and Bismut, J.-M., Quillen metrics and higher analytic torsion forms, J. Reine Angew. Math. 457 (1994), 85184, MR 96d:32036.Google Scholar
Bismut, J.-M., The Atiyah–Singer theorems: a probabilistic approach. I. The index theorem, J. Funct. Anal. 57(1) (1984), 5699, MR 86g:58128a.CrossRefGoogle Scholar
Bismut, J.-M., The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83(1) (1986), 91151, MR 87g:58117.CrossRefGoogle Scholar
Bismut, J.-M., Holomorphic families of immersions and higher analytic torsion forms, Astérisque 1997(244). viii+275, MR 2000b:58057.Google Scholar
Bismut, J.-M., Duistermaat–Heckman formulas and index theory, in Geometric Aspects of Analysis and Mechanics (ed. Kolk, Johan A. C. and van den Ban, Erik P.), Progress in Mathematics, Volume 292, pp. 155 (Birkhäuser/Springer, New York, 2011), MR 2809466.CrossRefGoogle Scholar
Bismut, J.-M., Hypoelliptic Laplacian and orbital integrals, in Annals of Mathematics Studies, Volume 177 (Princeton University Press, Princeton, NJ, 2011), MR 2828080.Google Scholar
Bismut, J.-M., Hypoelliptic Laplacian and Bott-Chern cohomology, in Progress in Mathematics, Volume 305 (Birkhäuser/Springer, Cham, 2013). A theorem of Riemann-Roch-Grothendieck in complex geometry, MR 3099098.Google Scholar
Bismut, J.-M. and Freed, D. S., The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106(1) (1986), 159176, MR 88h:58110a.CrossRefGoogle Scholar
Bismut, J.-M., Gillet, H. and Soulé, C., Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115(1) (1988), 79126, MR 89g:58192b.CrossRefGoogle Scholar
Bismut, J.-M. and Goette, S., Families torsion and Morse functions, Astérisque (275) (2001), x+293, MR 2002h:58059.Google Scholar
Bismut, J.-M. and Goette, S., Equivariant de Rham torsions, Ann. of Math. (2) 159(1) (2004), 53216, MR 2051391 (2005f:58059).CrossRefGoogle Scholar
Bismut, J.-M. and Lebeau, G., Complex immersions and Quillen metrics, Publ. Math. Inst. Hautes Études Sci. 1991(74) (1992), ii+298 pp., MR 94a:58205.Google Scholar
Bismut, J.-M. and Lott, J., Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8(2) (1995), 291363, MR 96g:58202.CrossRefGoogle Scholar
Bismut, J.-M., Ma, X. and Zhang, W., Opérateurs de Toeplitz et torsion analytique asymptotique, C. R. Math. Acad. Sci. Paris 349(17–18) (2011), 977981.CrossRefGoogle Scholar
Bismut, J.-M. and Vasserot, É., The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125(2) (1989), 355367, MR 91c:58141.CrossRefGoogle Scholar
Bismut, J.-M. and Vasserot, É., The asymptotics of the Ray–Singer analytic torsion of the symmetric powers of a positive vector bundle, Ann. Inst. Fourier (Grenoble) 40(4) (1990), 835848. 1991, MR 92b:58237.CrossRefGoogle Scholar
Bismut, J.-M. and Zhang, W., An extension of a theorem by Cheeger and Müller, Astérisque (205) (1992), 235. With an appendix by François Laudenbach, MR 93j:58138.Google Scholar
Bordemann, M., Meinrenken, E. and Schlichenmaier, M., Toeplitz quantization of Kähler manifolds and gl(N), N limits, Comm. Math. Phys. 165(2) (1994), 281296, MR 1301849 (96f:58067).CrossRefGoogle Scholar
Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd ed., Mathematical Surveys and Monographs, Volume 67 (American Mathematical Society, Providence, RI, 2000), MR 1721403 (2000j:22015).CrossRefGoogle Scholar
Boutet de Monvel, L. and Guillemin, V., The spectral theory of Toeplitz operators, in Annals of Mathematics Studies, Volume 99 (Princeton University Press, Princeton, NJ, 1981), MR 620794 (85j:58141).Google Scholar
Boutet de Monvel, L. and Sjöstrand, J., Sur la singularité des noyaux de Bergman et de Szegő, in Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34–35, pp. 123164 (Soc. Math. France, Paris, 1976), MR 0590106 (58 #28684).Google Scholar
Chazarain, J. and Piriou, A., Introduction à la théorie des équations aux dérivées partielles linéaires (Gauthier-Villars, Paris, 1981), MR 82i:35001.Google Scholar
Cheeger, J., Analytic torsion and the heat equation, Ann. of Math. (2) 109(2) (1979), 259322, MR 80j:58065a.CrossRefGoogle Scholar
Duistermaat, J. J. and Heckman, G. J., On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69(2) (1982), 259268, MR 84h:58051a.CrossRefGoogle Scholar
Duistermaat, J. J. and Heckman, G. J., Addendum to: ‘On the variation in the cohomology of the symplectic form of the reduced phase space’, Invent. Math. 72(1) (1983), 153158, MR 84h:58051b.CrossRefGoogle Scholar
Getzler, E., A short proof of the local Atiyah–Singer index theorem, Topology 25(1) (1986), 111117, MR 87h:58207.CrossRefGoogle Scholar
Knapp, A. W., Representation Theory of Semisimple Groups, Princeton Mathematical Series, Volume 36 (Princeton University Press, Princeton, NJ, 1986). An overview based on examples, MR 855239 (87j:22022).CrossRefGoogle Scholar
Ma, X., Functoriality of real analytic torsion forms, Israel J. Math. 131 (2002), 150, MR 2003i:58063.CrossRefGoogle Scholar
Ma, X. and Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, Volume 254 (Birkhäuser, Basel, 2007), MR 2339952 (2008g:32030).Google Scholar
Ma, X. and Marinescu, G., Toeplitz operators on symplectic manifolds, J. Geom. Anal. 18(2) (2008), 565611, MR 2393271.CrossRefGoogle Scholar
Ma, X. and Marinescu, G., Berezin-Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math. 662 (2012), 156, MR 2876259.Google Scholar
Ma, X. and Zhang, W., Superconnection and family Bergman kernels, C. R. Math. Acad. Sci. Paris 344(1) (2007), 4144, MR 2286586 (2007k:32023).CrossRefGoogle Scholar
Marshall, S. and Müller, W., On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds, Duke Math. J. 162(5) (2013), 863888, MR 3047468.CrossRefGoogle Scholar
Mathai, V. and Quillen, D., Superconnections, Thom classes, and equivariant differential forms, Topology 25(1) (1986), 85110, MR 87k:58006.CrossRefGoogle Scholar
Moscovici, H. and Stanton, R. J., R-torsion and zeta functions for locally symmetric manifolds, Invent. Math. 105(1) (1991), 185216, MR 92i:58199.CrossRefGoogle Scholar
Müller, W., Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math. 28(3) (1978), 233305, MR 80j:58065b.CrossRefGoogle Scholar
Müller, W., Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 6(3) (1993), 721753, MR 93m:58119.Google Scholar
Müller, W., The asymptotics of the Ray–Singer analytic torsion of hyperbolic 3-manifolds, in Metric and Differential Geometry, Progress in Mathematics, Volume 297, pp. 317352 (Birkhäuser/Springer, Basel, 2012), MR 3220447.CrossRefGoogle Scholar
Ray, D. B. and Singer, I. M., R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145210, MR 45 #4447.CrossRefGoogle Scholar
Schlichenmaier, M., Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., Volume 22, pp. 289306 (Kluwer Academic Publishers, Dordrecht, 2000), MR 1805922 (2001k:53177).CrossRefGoogle Scholar
Taylor, M. E., Pseudodifferential Operators, Princeton Mathematical Series, Volume 34 (Princeton University Press, Princeton, NJ, 1981), MR 82i:35172.CrossRefGoogle Scholar