Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T12:40:24.149Z Has data issue: false hasContentIssue false

Purity and decomposition theorems for staggered sheaves

Published online by Cambridge University Press:  02 April 2012

Pramod N. Achar
Affiliation:
Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton Rouge, LA 70803–4918,USA (pramod@math.lsu.edu)
David Treumann
Affiliation:
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208–2730,USA (treumann@math.northwestern.edu)

Abstract

Two major results in the theory of -adic mixed constructible sheaves are the purity theorem (every simple perverse sheaf is pure) and the decomposition theorem (every pure object in the derived category is a direct sum of shifts of simple perverse sheaves). In this paper, we prove analogues of these results for coherent sheaves. Specifically, we work with staggered sheaves, which form the heart of a certain t-structure on the derived category of equivariant coherent sheaves. We prove, under some reasonable hypotheses, that every simple staggered sheaf is pure, and that every pure complex of coherent sheaves is a direct sum of shifts of simple staggered sheaves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Achar, P., Staggered t-structures on derived categories of equivariant coherent sheaves, Int. Math. Res. Not. 2009 (2009), 38433900.Google Scholar
2.Achar, P., On the quasi-hereditary property for staggered sheaves, Trans. Am. Math. Soc. 362 (2010), 47354753.CrossRefGoogle Scholar
3.Achar, P. and Sage, D., Perverse coherent sheaves and the geometry of special pieces in the unipotent variety, Adv. Math. 220 (2009), 12651296.CrossRefGoogle Scholar
4.Achar, P. and Sage, D., Staggered sheaves on partial flag varieties, C. R. Acad. Sci. Paris Sér. I 347 (2009), 139142.CrossRefGoogle Scholar
5.Achar, P. and Treumann, D., Baric structures on triangulated categories and coherent sheaves, Int. Math. Res. Not. 2011(16) (2011), 36883743.Google Scholar
6.Beĭlinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, dans Analyse et Topologie sur les Espaces Singuliers, I, Luminy, 1981, Astérisque, Volume 100, pp. 5171 (Société Mathématique de France, Paris, 1982).Google Scholar
7.Bezrukvnikov, R., Perverse coherent sheaves (after Deligne), preprint (arXiv:math.AG/0005152).Google Scholar
8.Bondarko, M., Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K - Theory 6(3) (2010), 387504.CrossRefGoogle Scholar
9.Deligne, P., La conjecture de Weil, I, Publ. Math. IHES 43 (1974), 273307.Google Scholar
10.Deligne, P., La conjecture de Weil, II, Publ. Math. IHES 52 (1980), 137252.Google Scholar
11.Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, Volume 20 (Springer, 1966).Google Scholar
12.Morel, S., Complexes d'intersection des compactifications de Baily–Borel: le cas des groupes unitaires sur Q, PhD thesis, Université Paris XI Orsay (2005).Google Scholar
13.Pauksztello, D., Compact corigid objects in triangulated categories and co-t-structures, Cent. Eur. J. Math. 6 (2008), 2542.Google Scholar
14.Treumann, D., Staggered t-structures on toric varieties, J. Alg. 323 (2010), 12121225.CrossRefGoogle Scholar