Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T05:26:10.875Z Has data issue: false hasContentIssue false

Why did life emerge?

Published online by Cambridge University Press:  04 December 2008

Arto Annila
Affiliation:
Department of Physics, Institute of Biotechnology and Department of Biosciences, POB 64, University of Helsinki, Finland e-mail: arto.annila@helsinki.fi
Erkki Annila
Affiliation:
Finnish Forest Research Institute, Finland

Abstract

Many mechanisms, functions and structures of life have been unraveled. However, the fundamental driving force that propelled chemical evolution and led to life has remained obscure. The second law of thermodynamics, written as an equation of motion, reveals that elemental abiotic matter evolves from the equilibrium via chemical reactions that couple to external energy towards complex biotic non-equilibrium systems. Each time a new mechanism of energy transduction emerges, e.g., by random variation in syntheses, evolution prompts by punctuation and settles to a stasis when the accessed free energy has been consumed. The evolutionary course towards an increasingly larger energy transduction system accumulates a diversity of energy transduction mechanisms, i.e. species. The rate of entropy increase is identified as the fitness criterion among the diverse mechanisms, which places the theory of evolution by natural selection on the fundamental thermodynamic principle with no demarcation line between inanimate and animate.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, M. & Finn, E.J. (1983). Fundamental University Physics Quantum and Statistical Physics. Addison-Wesley, London.Google Scholar
Atkins, P.W. (1998). Physical chemistry. Oxford University Press, New York.Google Scholar
Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York.CrossRefGoogle Scholar
Bejan, A. (1997). Advanced Engineering Thermodynamics. Wiley, New York.Google Scholar
Brooks, D.R. & Wiley, E.O. (1986). Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago.Google Scholar
Chaisson, E.J. (1998). The cosmic environment for the growth of complexity. Biosystems 46, 1319.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species. John Murray, London.Google Scholar
Dewar, R.C. (2003). Information theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631641.CrossRefGoogle Scholar
Eigen, M. & Schuster, P. (1979). The Hypercycle: A Principle of Natural Self-organization. Springer, Berlin.CrossRefGoogle Scholar
Eldredge, N. & Gould, S.J. (1972). Models in Paleobiology, ed. Schopf, T.J.M., pp. 82115. Freeman, Cooper, San Francisco.Google Scholar
Fry, I. (2000). The Emergence of Life on Earth. Rutgers University Press, New Jersey.Google Scholar
Gibbs, J.W. (1993–1994). The Scientific Papers of J. Willard Gibbs. Ox Bow Press, Woodbridge, CT.Google Scholar
Gould, S.J. (2002). The Structure of Evolutionary Theory. Harvard University Press, Cambridge, MA.Google Scholar
Grönholm, T. & Annila, A. (2007). Natural distribution. Math. Biosci. 210, 659667.CrossRefGoogle ScholarPubMed
Jaakkola, S., El-Showk, S. & Annila, A. (2008a). The driving force behind genomic diversity. Biophys. Chem. 134, 232238. arXiv:0807.0892.CrossRefGoogle ScholarPubMed
Jaakkola, S., Sharma, V. & Annila, A. (2008b). Cause of chirality consensus. Curr. Chem. Biol. 2, 5358.Google Scholar
Jacob, F. (1977). Evolution and tinkering. Science 196, 11611166.CrossRefGoogle ScholarPubMed
Jaynes, E.T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620630.CrossRefGoogle Scholar
Kacser, H. (1960). Kinetic models of development and heredity. Models and analogues in biology. Symp. Soc. Exptl. Biol. 14, 1327. Cambridge University Press, Cambridge.Google Scholar
Kaila, V.R.I. & Annila, A. (2008). Natural selection for least action. Proc. R. Soc. A 464, 30553070.CrossRefGoogle Scholar
Karnani, M. & Annila, A. (2008). Gaia again. Biosystems doi: 10.1016/j.biosystems.2008.07.003.Google Scholar
Kondepudi, D. & Prigogine, I. (1998). Modern Thermodynamics. Wiley, New York.Google Scholar
Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.Google Scholar
Lineweaver, C.H. (2005). Cosmological and biological reproducibility: limits of the maximum entropy production principle. In Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, eds Kleidon, A. & Lorenz, R.D. Springer, Heidelberg.Google Scholar
Lorenz, R.D. (2002). Planets life and the production of entropy. Int. J. Astrobiology 1, 313.CrossRefGoogle Scholar
Lotka, A.J. (1925). Elements of Mathematical Biology. Dover, New York.Google Scholar
Lovelock, J.E. (1988). The Ages of Gaia. Oxford University Press, Oxford.Google Scholar
Martin, P. (2006). Beginning research on the quantification of spatial order. In 18th Annual Colloquium of the Spatial Information Research Centre (SIRC 2006: Interactions and Spatial Processes), 6–7 November, Dunedin, New Zealand, pp. 109125.Google Scholar
Mendoza, E. (ed.) (1960). Reflections on the Motive Power of Fire by Sadi Carnot and other Papers on the Second Law of Thermodynamics by E. Clapeyron and R. Clausius. Dover, New York.Google Scholar
Miller, S.L. (1953). Production of amino acids under possible primitive earth conditions. Science 117, 528.CrossRefGoogle ScholarPubMed
Oparin, A.I. (1952). The Origin of Life. Dover, New York.Google Scholar
Orgel, L.E. (1998). The origin of life – a review of facts and speculations. TIBS 23, 491495.Google ScholarPubMed
Peacocke, A.R. (1996). A Pioneer of the Kinetic Approach. J. Theor. Biol. 182, 219222.CrossRefGoogle ScholarPubMed
Prigogine, I. & Wiame, J.M. (1946). Biologie et thermodynamique des phenomenes irreversibles, Experientia 2, 451453.CrossRefGoogle Scholar
Pross, A. (2003). The driving force for life's emergence: kinetic and thermodynamic considerations. J. Theor. Biol. 220, 393406.CrossRefGoogle ScholarPubMed
Pross, A. (2005). On the emergence of biological complexity: life as a kinetic state of matter. Orig. Life Evol. Biosph. 35, 151166.CrossRefGoogle ScholarPubMed
Sagan, D. (2007). From producing entropy to reducing gradients to spreading energy: Understanding the essence of the second law. In AIP Conference Proceedings (vol. 1033). Meeting the Entropy Challenge: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan, 4–5 Oct 2007, Cambridge, MA, USA. Beretta, G.P., Ghoniem, A. & Hatsopoulos, G., pp. 194197. American Institute of Physics, New York.Google Scholar
Salthe, S.N. (1985). Evolving hierarchal system. Columbia University Press, New York.CrossRefGoogle Scholar
Salthe, S.N. (2004). The origin of new levels in dynamical hierarchies. Entropy 6, 327343.CrossRefGoogle Scholar
Schneider, E.D. & Kay, J.J. (1994). Life as a manifestation of the 2nd law of thermodynamics. Math. Comp. Model. 19, 2548.CrossRefGoogle Scholar
Schrödinger, E. (1948). What is Life? The physical aspects of the living cell. Cambridge University Press, Cambridge.Google Scholar
Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379423 & 623656.CrossRefGoogle Scholar
Sharma, V. & Annila, A. (2007). Natural process – natural selection. Biophys. Chem. 127, 123128.CrossRefGoogle ScholarPubMed
Strogatz, S.H. (2000). Nonlinear Dynamics and Chaos with Applications To Physics, Biology, Chemistry and Engineering. Westview, Cambridge, MA.Google Scholar
Swenson, R. (1998). Spontaneous order, evolution, and autocatakinetics: the nomological basis for the emergence of meaning. In van de Vijver, G., Salthe, S. & Delpos, M. (eds) Evolutionary Systems: Biological and Epistemological Perspectives on Selection and Self-organization, pp. 155180. Kluwer, Dordrecht.CrossRefGoogle Scholar
Ulanowicz, R.E. & Hannon, B.M. (1987). Life and the production of entropy. Proc. R. Soc. London B. 232, 181192.Google Scholar
Verhulst, P.F. (1845). Recherches mathématiques sur la loi d'accroissement de la population. Nouv. Mém. Acad. Roy. Sci. Belleslett. Bruxelles 18, 138.CrossRefGoogle Scholar
Waage, P. & Guldberg, C.M. (1864). Forhandlinger, vol. 35 (Videnskabs-Selskabet i Christiana).Google Scholar
Weber, B.H., Depew, D.J. & Smith, J.D. (eds) (1988). Entropy, Information and Evolution. Cambridge, MA, MIT Press.Google Scholar
Wilson, E.O. (1992). The Diversity of Life. Norton, New York.Google Scholar
Woese, C.R. (1998). The universal ancestor. Proc. Natl. Acad. Sci. 95, 68546859.CrossRefGoogle ScholarPubMed
Würtz, P, Annila, A. (2008). Roots of diversity relations. J. Biophys. (in press).CrossRefGoogle ScholarPubMed