Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:38:59.662Z Has data issue: false hasContentIssue false

Multifrequency Atomic Force Microscopy: Compositional Imaging with Electrostatic Force Measurements

Published online by Cambridge University Press:  19 July 2011

Sergei Magonov*
Affiliation:
Agilent Technologies, 4330 Chandler Blvd., Chandler, AZ 85284, USA
John Alexander
Affiliation:
Agilent Technologies, 4330 Chandler Blvd., Chandler, AZ 85284, USA
*
Corresponding author. E-mail: magonov@ntmdt.us
Get access

Abstract

We demonstrate that single-pass Kelvin force microscopy (KFM) and dC/dz measurements in different environments expand the compositional imaging with atomic force microscopy. The KFM and dC/dz studies were performed in the intermittent contact mode with force gradient detection of tip-sample electrostatic interactions. Both factors contribute to sensitive measurements of the surface potential and capacitance gradient with nanometer-scale spatial resolution as it was verified on a broad range of materials: metal alloys, polymers, organic layers, and liquid-like objects. For many samples the surface potential and dC/dz variations complement each other in identification of individual components of heterogeneous materials. In situ imaging in different humidity or vapors of various organic solvents further facilitate recognition of the constituents of multicomponent polymer samples due to selective swelling of components.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, J., Magonov, S. & Moeller, M. (2009). Topography and surface potential in Kelvin force microscopy of perfluoroalkyl alkane self-assemblies. J Vac Sci Technol B 27, 903911.CrossRefGoogle Scholar
Ando, H., Yoshizaki, T., Aoki, A. & Yamakawa, H. (1997). Mean-square electric dipole moment of oligo- and poly(methyl methacrylate) in dilute solution. Macromolecules 30, 61996207.CrossRefGoogle Scholar
Belikov, S., Erina, N. & Magonov, S. (2007). Interplay between an experiment and theory in probing mechanical properties and phase imaging of heterogeneous polymer materials. J Phys Conf Ser 6, 765769.CrossRefGoogle Scholar
Belikov, S. & Magonov, S. (2006). True molecular-scale imaging in atomic force microscopy: Experiment and modeling. Jpn J Appl Phys 45, 21582165.CrossRefGoogle Scholar
Broniatowski, M., Minores, J. Jr. & Dynarowicz-Latka, P. (2004). Semifluorinated chains in 2D-(per-fluorododecyl)-alkanes at the air/water interface. J Colloid Interf Sci 279, 552558.CrossRefGoogle ScholarPubMed
Cleveland, J., Anczykowski, B., Schmid, A.E. & Elings, V.B. (1998). Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72, 26132615.CrossRefGoogle Scholar
Colchero, J., Gil, A. & Baro, A.M. (2001). Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys Rev B 64, 245403245414.CrossRefGoogle Scholar
Crider, P.S., Majewski, M.R., Zhang, J., Oukris, H. & Israeloff, N.E. (2008). Local dielectric spectroscopy of near-surface glassy polymer dynamics. J Chem Phys 128, 044908-5.Google ScholarPubMed
El Abed, A., Faure, M.-C., Pouzet, E. & Abilon, O. (2002). Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface. Phys Rev E 5, 051603051606.CrossRefGoogle Scholar
Elings, V.B. & Gurley, J.A. (1994). Scanning probe microscope using stored data for vertical probe positioning. US Patent 5,308,974.Google Scholar
Fujihira, M. (1999). Kelvin probe force microscopy of molecular surfaces. Ann Rev Mater Sci 29, 353380.CrossRefGoogle Scholar
Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K. & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev Sci Instrum 76, 18.Google Scholar
Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M.A. & Gomilla, G. (2010). Quantifying the dielectric constant of thick insulators using electrostatic force microscopy. Appl Phys Lett 96, 183107183109.CrossRefGoogle Scholar
Gramse, G., Casuso, I., Toset, J., Fumagalli, L. & Gomila, G. (2009). Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy. Nanotechnology 20, 395702395709.CrossRefGoogle ScholarPubMed
Kim, J.-J., Jung, S.-D. & Hwang, W.-Y. (1996). Molecular conformation and application of stereoregular PMMA Langmuir-Blodgett films. ETRI J 18, 195206.CrossRefGoogle Scholar
Krayev, A.V. & Talroze, R.V. (2004). Electric force microscopy of dielectric heterogeneous polymer blends. Polymer 45, 81958200.CrossRefGoogle Scholar
Krok, F., Sajewicz, K., Konior, J.M., Goryl, M., Piatkowski, P. & Szymonski, M. (2008). Lateral resolution and potential sensitivity in Kelvin probe force microscopy; Towards understanding of the sub-nanometer resolution. Phys Rev B 77, 235427235435.CrossRefGoogle Scholar
Labardi, M., Prevosto, D., Nguyen, K.H., Capaccioli, S., Lucchesi, M. & Rolla, P. (2010). Local dielectric spectroscopy of nanocomposites materials interfaces. J Vac Sci Technol B 28, C4D11C4D17.CrossRefGoogle Scholar
Magonov, S. (2000). AFM in analysis of polymers. In Encyclopedia of Analytical Chemistry, Meyers, R.A. (Ed.), pp. 74327491. Chichester, UK: John Willey & Sons Ltd.Google Scholar
Magonov, S. & Alexander, J. (2008). Advanced atomic force microscopy: Exploring measurements of local electric properties. Application Note 5989-9740EN. Chandler, AZ: Agilent Technologies, Inc.Google Scholar
Magonov, S. & Alexander, J. (2010). Compositional imaging of materials with single-pass Kelvin force microscopy. Application Note 5990-0000EN. Chandler, AZ: Agilent Technologies, Inc.Google Scholar
Magonov, S., Alexander, J., Jeong, S.-H. & Kotov, N. (2010). High-resolution imaging of molecular and nanoparticles assemblies with Kevin force microscopy. J Nanosci Nanotech 10, 15.CrossRefGoogle Scholar
Magonov, S., Alexander, J. & Wu, S. (2011). Advancing characterization of materials with Atomic force microscopy based electric techniques. In Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, Kalinin, S. & Gruverman, A. (Eds.), pp. 233300. New York: Springer.Google Scholar
Magonov, S. & Mesa, B. (2007). Novel diamond/sapphire probes for scanning probe microscopy applications. J Phys Conf Ser 6, 770774.Google Scholar
Martin, Y., Abraham, D.A. & Wickramasinghe, H.K. (1988). High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52, 110310005.CrossRefGoogle Scholar
Riedel, C., Arinero, R., Tordjeman, Ph., Leveque, G., Schwartz, G.A., Alegria, A. & Colmenero, J. (2010a). Nanodielectric mapping of model polystyrene—Poly(vinyl acetate) blend by electrostatic force microscopy. Phys Rev E 81, 010801010804.CrossRefGoogle ScholarPubMed
Riedel, C., Sweeney, R., Israeloff, N.E., Arinero, R., Schwartz, G.A., Alegria, A., Tordjeman, Ph. & Colmenero, J. (2010b). Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy. Appl Phys Lett 96, 213110213112.CrossRefGoogle Scholar
Salmeron, M. (2001). Scanning polarization force microscopy. Oil Gas Sci Technol 56, 6375.CrossRefGoogle Scholar
Stockmayer, W.H. (1967). Dielectric dispersion in solutions of flexible polymers. Pure Appl Chem 15, 539554.CrossRefGoogle Scholar
Tanaka, K., Fujii, Y., Atarashi, H., Akabori, K., Hono, M. & Nagamura, T. (2008). Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films. Langmuir 24, 296301.CrossRefGoogle ScholarPubMed
Zerweck, U., Loppacher, Ch., Otto, T., Grafstroem, S. & Eng, L.M. (2005). Accuracy and resolution limits of Kelvin probe force microscopy. Phys Rev B 71, 125424125433.CrossRefGoogle Scholar
Zhang, Q.M., Bharti, V., Kavarnos, G. & Schwartz, M. (Ed.) (2002). Poly (vinylidene fluoride) (PVDF) and its copolymers. In Encyclopedia of Smart Materials, Volumes 1–2, pp. 807825. New York: John Wiley & Sons.Google Scholar