Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T05:38:13.663Z Has data issue: false hasContentIssue false

The Formation and Utility of Sub-Angstrom to Nanometer-Sized Electron Probes in the Aberration-Corrected Transmission Electron Microscope at the University of Illinois

Published online by Cambridge University Press:  26 February 2010

Jianguo Wen*
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
James Mabon
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Changhui Lei
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Steve Burdin
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Ernie Sammann
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Ivan Petrov
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Amish B. Shah
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Varistha Chobpattana
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Jiong Zhang
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Ke Ran
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P.R. China
Jian-Min Zuo
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Satoshi Mishina
Affiliation:
JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA
Toshihiro Aoki
Affiliation:
JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA
*
Corresponding author. E-mail: jgwen@illinois.edu
Get access

Abstract

We evaluate the probe forming capability of a JEOL 2200FS transmission electron microscope equipped with a spherical aberration (Cs) probe corrector. The achievement of a real space sub-Angstrom (0.1 nm) probe for scanning transmission electron microscopy (STEM) imaging is demonstrated by acquisition and modeling of high-angle annular dark-field STEM images. We show that by optimizing the illumination system, large probe currents and large collection angles for electron energy loss spectroscopy (EELS) can be combined to yield EELS fine structure data spatially resolved to the atomic scale. We demonstrate the probe forming flexibility provided by the additional lenses in the probe corrector in several ways, including the formation of nanometer-sized parallel beams for nanoarea electron diffraction, and the formation of focused probes for convergent beam electron diffraction with a range of convergence angles. The different probes that can be formed using the probe corrected STEM opens up new applications for electron microscopy and diffraction.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, L.F., Blom, D.A., O'Keefe, M.A. & Mishina, S. (2005). Design and performance characteristics of the ORNL advanced microscopy laboratory and JEOL 2200FS-AC aberration-corrected STEM/TEM. Microsc Microanal 11, 21362137.CrossRefGoogle Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.CrossRefGoogle ScholarPubMed
Blom, D.A., Allard, L.F., Mishina, S. & O'Keefe, M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.CrossRefGoogle ScholarPubMed
Botton, G.A. (2008). The Canadian Centre for Electron Microscopy: A national facility for ultrahigh resolution electron microscopy. Int J Nanotechnol 5, 10821093.CrossRefGoogle Scholar
Dwyer, C., Kirkland, A.I., Hartel, P., Mueller, H. & Haider, M. (2007). Electron nanodiffraction using sharply focused parallel probes. Appl Phys Lett 90, 151104.CrossRefGoogle Scholar
Freitag, B., Kujawa, S., Mul, P.M., Ringnalda, J. & Tiemeijer, P.C. (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209214.CrossRefGoogle ScholarPubMed
Haider, M., Muller, H. & Uhlemann, S. (2008). Present and future hexapole aberration correctors for high-resolution electron microscopy. In Advances in Imaging and Electron Physics, Hawkes, P. (Eds.), vol. 153, pp. 43-+. San Diego, CA: Elsevier Academic Press Inc.Google Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Holmestad, R., Jiang, B. & Zuo, J.M. (2006). STEM contrast in perovskite materials. In 16th International Microscopy Congress, vol. 2, p. 608. Sapporo, Japan.Google Scholar
Huang, W.J., Sun, R., Tao, J., Menard, L.D., Nuzzo, R.G. & Zuo, J.M. (2008). Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7, 308313.CrossRefGoogle ScholarPubMed
Huang, W.J., Zuo, J.M., Jiang, B., Kwon, K.W. & Shim, M. (2009). Sub-angstrom-resolution diffractive imaging of single nanocrystals. Nat Phys 5, 129133.CrossRefGoogle Scholar
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I. & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.CrossRefGoogle ScholarPubMed
Inada, H., Wu, L., Wall, J., Su, D. & Zhu, Y. (2009). Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM. J Elect Microsc 58, 111122.CrossRefGoogle ScholarPubMed
Kirkland, A.I., Haigh, S. & Chang, L.-Y. (2008). Aberration corrected TEM: Current status and future prospects. J Phys 126, 0120340122039.Google Scholar
Klie, R.E., Johnson, C. & Zhu, Y.M. (2008). Atomic-resolution STEM in the aberration-corrected JEOL JEM2200FS. Microsc Microanal 14, 104112.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Muller, D.A., Kirkland, E.J., Thomas, M.G., Grazul, J.L., Fitting, L. & Weyland, M. (2006). Room design for high-performance electron microscopy. Ultramicroscopy 106, 10331040.CrossRefGoogle ScholarPubMed
Pennycook, S.J. & Jesson, D.E. (1990). High-resolution incoherent imaging of crystals. Phys Rev Lett 64, 938941.CrossRefGoogle ScholarPubMed
Pennycook, S.J. & Jesson, D.E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 1438.CrossRefGoogle Scholar
Rose, H. (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Methods 187, 187199.CrossRefGoogle Scholar
Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J. & Cockayne, D. (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Elec Microsc 54, 119121.Google ScholarPubMed
Xu, P.R., Kirkland, E.J., Silcox, J. & Keyse, R. (1990). High-resolution imaging of silicon (111) using a 100 keV stem. Ultramicroscopy 32, 93102.CrossRefGoogle Scholar
Zuo, J.M., Gao, M., Tao, J., Li, B.Q., Twesten, R. & Petrov, I. (2004). Coherent nano-area electron diffraction. Microsc Res Tech 64, 347355.CrossRefGoogle ScholarPubMed
Zuo, J.M., Kim, T., Celik-Aktas, A. & Tao, J. (2007). Quantitative structural analysis of individual nanotubes by electron diffraction. Zeitschrift für Kristallographie 222, 625633.CrossRefGoogle Scholar