Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T23:28:44.842Z Has data issue: false hasContentIssue false

Mn Valency at La0.7Sr0.3MnO3/SrTiO3 (0 0 1) Thin Film Interfaces

Published online by Cambridge University Press:  22 May 2009

Thomas Riedl
Affiliation:
IFW Dresden, PF 270116, 01171 Dresden, Germany
Thomas Gemming*
Affiliation:
IFW Dresden, PF 270116, 01171 Dresden, Germany
Kathrin Dörr
Affiliation:
IFW Dresden, PF 270116, 01171 Dresden, Germany
Martina Luysberg
Affiliation:
Institut für Festkörperforschung and Ernst Ruska Centrum, Forschungszentrum Jülich, 52425 Jülich, Germany
Klaus Wetzig
Affiliation:
IFW Dresden, PF 270116, 01171 Dresden, Germany
*
Corresponding author. E-mail: T.Gemming@ifw-dresden.de
Get access

Abstract

This article presents a (scanning) transmission electron microscopy (TEM) study of Mn valency and its structural origin at La0.7Sr0.3MnO3/SrTiO3(0 0 1) thin film interfaces. Mn valency deviations can lead to a breakdown of ferromagnetic order and thus lower the tunneling magnetoresistance of tunnel junctions. Here, at the interface, a Mn valency reduction of 0.16 ± 0.10 compared to the film interior and an additional feature at the low energy-loss flank of the Mn-L3 line have been observed. The latter may be attributed to an elongation of the (0 0 1) plane spacing at the interface detected by geometrical phase analysis of high-resolution images. Regarding the interface geometry, high-resolution high-angle annular dark-field scanning TEM images reveal an atomically sharp interface in some regions whereas the transition appears broadened in others. This can be explained by the presence of steps. The performed measurements indicate that, among the various structure-related influences on the valency, the atomic layer termination and the local oxygen content are most important.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbate, M., de Groot, F., Fuggle, J.C., Fujimori, A., Strebel, O., Lopez, F., Domke, M., Kaindl, G.A.S., Takano, M., Takeda, Y., Eisaki, H. & Uchida, S. (1992). Controlled-valence properties of La1−x Srx FeO3 and La1−x Srx MnO3 studied by soft-X-ray absorption spectroscopy. Phys Rev B 46, 45114519.CrossRefGoogle Scholar
Bowen, M., Bibes, M., Barthélémy, A., Contour, J.-P., Anane, A., Lemaître, Y. & Fert, A. (2003). Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett 82, 233235.CrossRefGoogle Scholar
Casanove, M.-J., Rouceau, C., Baulès, P., Majimel, J., Ousset, J.-C., Magnoux, D. & Bobo, J.F. (2002). Growth and relaxation mechanisms in La0.66Sr0.33MnO3 manganites deposited on SrTiO3(001) and MgO(001). Appl Surf Sci 188, 1923.CrossRefGoogle Scholar
Dörr, K., Walter, T., Sahana, M., Müller, K.-H., Nenkov, K., Brand, K. & Schultz, L. (2001). Magnetotransport of La0.7Sr0.3MnO3/SrTiO3 multilayers with ultrathin manganite layers. J Appl Phys 89, 69736975.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.CrossRefGoogle Scholar
Fert, A., Barthélémy, A., Ben Youssef, J., Contour, J.-P., Cros, V., Teresa, J.D., Hamzic, A., George, J., Faini, G., Grollier, J., Jaffres, H., Gall, H.L., Montaigne, F., Pailloux, F. & Petroff, F. (2001). Review of recent results on spin polarized tunneling and magnetic switching by spin injection. Mater Sci Eng B 84, 19.CrossRefGoogle Scholar
Hemberger, J., Krimmel, A., Kurz, T., Krug von Nidda, H.-A., Ivanov, V.Y., Mukhin, A.A., Balbashov, A.M. & Loidl, A. (2002). Structural, magnetic, and electrical properties of single-crystalline La1−x Srx MnO3 (0.4 < x < 0.85). Phys Rev B 66, 94410.CrossRefGoogle Scholar
Herger, R., Willmott, P., Schlepütz, C., Björck, M., Pauli, S., Martoccia, D., Patterson, B., Kumah, D., Clarke, R., Yacoby, Y. & Döbeli, M. (2008). Structure determination of monolayer-by-monolayer grown La1−x Srx MnO3 thin films and the onset of magnetoresistance. Phys Rev B 77, 085401.CrossRefGoogle Scholar
Holzapfel, B., Roas, B., Schultz, L., Bauer, P. & Saemann-Ischenko, G. (1992). Off-axis laser deposition of YBa2Cu3O7−δ thin films. Appl Phys Lett 61, 31783180.CrossRefGoogle Scholar
Hüe, F., Johnson, C.L., Lartigue-Korinek, S., Wang, G., Buseck, P.R. & Hÿtch, M.J. (2005). Calibration of projector lens distortions. J Elect Microsc 54, 181190.Google ScholarPubMed
Hÿtch, M.J. (1997). Analysis of variations in structure from high resolution electron microscope images by combining real space and Fourier space information. Microsc Microanal Microstruct 8, 4157.CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146.CrossRefGoogle Scholar
Izumi, M., Konishi, Y., Nishihara, T., Hayashi, S., Shinohara, M., Kawasaki, M. & Tokura, Y. (1998). Atomically defined epitaxy and physical properties of strained La0.6Sr0.4MnO3 films. Appl Phys Lett 73, 24972499.CrossRefGoogle Scholar
Jahn, H.A. & Teller, E. (1937). Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc Roy Soc A 161, 220235.Google Scholar
Kourkoutis, L.F., Muller, D., Hotta, Y. & Hwang, H. (2007). Asymmetric interface profiles in LaVO3/SrTiO3 heterostructures grown by pulsed laser deposition. Appl Phys Lett 91, 163101.CrossRefGoogle Scholar
Kumigashira, H., Chikamatsu, A., Hashimoto, R., Oshima, M., Ohnishi, T., Lippmaa, M., Wadati, H., Fujimori, A., Ono, K., Kawasaki, M. & Koinuma, H. (2006). Robust Ti4+ states in SrTiO3 layers of La0.6Sr0.4MnO3/SrTiO3/La0.6Sr0.4MnO3 junctions. Appl Phys Lett 88, 192504.CrossRefGoogle Scholar
Kurata, H. & Colliex, C. (1993). Electron-energy-loss core-edge structures in manganese oxides. Phys Rev B 48, 21022108.CrossRefGoogle ScholarPubMed
Lyonnet, R., Maurice, J.-L., Hÿtch, M.J., Michel, D. & Contour, J.-P. (2000). Heterostructures of La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 grown by pulsed laser deposition on (001) SrTiO3. Appl Surf Sci 162, 245249.CrossRefGoogle Scholar
Maurice, J.-L., Imhoff, D., Contour, J.-P. & Colliex, C. (2006). Interfaces in 100 epitaxial heterostructures of perovskite oxides. Phil Mag 86, 21272146.CrossRefGoogle Scholar
Maurice, J.-L., Pailloux, F., Barthélémy, A., Durand, O., Imhoff, D., Lyonnet, R., Rocher, A. & Contour, J.-P. (2003a). Strain relaxation in the epitaxy of La2/3Sr1/3MnO3 grown by pulsed-laser deposition on SrTiO3(001). Phil Mag 83, 32013224.CrossRefGoogle Scholar
Maurice, J.-L., Pailloux, F., Imhoff, D., Bonnet, N., Samet, L., Barthélémy, A., Contour, J.-P., Colliex, C. & Fert, A. (2003b). Atomic-scale analysis of interfaces in an all-oxide magnetic tunnel junction. Eur Phys J Appl Phys 24, 215221.CrossRefGoogle Scholar
Maus-Friedrichs, W., Frerichs, M., Gunhold, A., Krischok, S., Kempter, V. & Bihlmayer, G. (2002). The characterization of SrTiO3(001) with MIES, UPS(HeI) and first-principles calculations. Surf Sci 515, 499506.CrossRefGoogle Scholar
Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P. & Hofer, F. (2003). Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469480.CrossRefGoogle ScholarPubMed
Nakagawa, N., Hwang, H. & Muller, D. (2006). Why some interfaces cannot be sharp. Nat Mater 5, 204209.CrossRefGoogle Scholar
Nakamura, T., Inada, H. & Iiyama, M. (1998). In situ surface characterization of SrTiO3(100) substrates and homoepitaxial SrTiO3 thin films grown by molecular beam epitaxy and pulsed laser deposition. Appl Surf Sci 130-132, 576581.CrossRefGoogle Scholar
Noh, J.S., Naht, T.K., Eom, C.B., Sun, J.Z., Tian, W. & Pan, X.Q. (2001). Magnetotransport in manganite trilayer junctions grown by 90 degrees off-axis sputtering. Appl Phys Lett 79, 233235.CrossRefGoogle Scholar
Pailloux, F., Imhoff, D., Sikora, T., Barthélémy, A., Maurice, J.-L., Contour, J.-P., Colliex, C. & Fert, A. (2002). Nanoscale analysis of a SrTiO3/La2/3Sr1/3MnO3 interface. Phys Rev B 66, 014417.CrossRefGoogle Scholar
Paterson, J.H. & Krivanek, O.L. (1990). ELNES of 3d transition-metal oxides, II. Variations with oxidation state and crystal structure. Ultramicroscopy 32, 319325.CrossRefGoogle Scholar
Pearson, D.H., Ahn, C.C. & Fultz, B. (1993). White lines and d-electron occupancies for the 3d and 4d transition metals. Phys Rev B 47, 84718478.CrossRefGoogle ScholarPubMed
Pearson, D.H., Fultz, B. & Ahn, C.C. (1988). Measurements of 3d state occupancy in transition metals using electron energy loss spectrometry. Appl Phys Lett 53, 14051407.CrossRefGoogle Scholar
Rask, J.H., Miner, B.A. & Busek, P.R. (1987). Determination of manganese oxidation states in solids by electron energy-loss spectroscopy. Ultramicroscopy 21, 321326.CrossRefGoogle Scholar
Riedl, T. (2008). La0,7Sr0,3MnO3-Dünnschichten auf SrTiO3 (0 0 1)-Substrat: Struktur und Mn-Wertigkeit. Ph.D. Thesis, Technische Universität Dresden.Google Scholar
Riedl, T., Gemming, T., Gruner, W., Acker, J. & Wetzig, K. (2007). Determination of manganese valency in La1−x Srx MnO3 using ELNES in the (S)TEM. Micron 38, 224230.CrossRefGoogle Scholar
Riedl, T., Gemming, T. & Wetzig, K. (2005). Electron beam sensitivity of La0,7 Sr0,3 MnO3 EELS core-loss edges. EDGE 2005 International EELS WorkshopMay 1–5Grundlsee, Austria, p. 131.Google Scholar
Riedl, T., Gemming, T. & Wetzig, K. (2006). Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284291.CrossRefGoogle ScholarPubMed
Samet, L., Imhoff, D., Maurice, J.-L., Contour, J.-P., Gloter, A., Manoubi, T., Fert, A. & Colliex, C. (2003). EELS study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions. Eur Phys J B 34, 179192.CrossRefGoogle Scholar
Snoeck, E., Warot, B., Ardhuin, H., Rocher, A., Casanove, M.J., Kilaas, R. & Hÿtch, M.J. (1998). Quantitative analysis of strain field in thin films from HRTEM micrographs. Thin Solid Films 319, 157162.CrossRefGoogle Scholar
Sun, J.Z., Krusin-Elbaum, L., Duncombe, P.R., Gupta, A. & Laibowitz, R.B. (1997). Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Appl Phys Lett 70, 17691771.CrossRefGoogle Scholar
Viret, M., Drouet, M., Nassar, J., Contour, J.P., Fermon, C. & Fert, A. (1997). Low-field colossal magnetoresistance in manganite tunnel spin valves. Europhys Lett 39, 545550.CrossRefGoogle Scholar
Viret, M., Nassar, J., Drouet, M., Contour, J., Fermon, C. & Fert, A. (1999). Spin polarised tunnelling as a probe of half metallic ferromagnetism in mixed-valence manganites. J Magn Magn Mater 198-199, 15.CrossRefGoogle Scholar
Zenia, H., Gehring, G., Banach, G. & Temmerman, W. (2005). Electronic and magnetic properties of the (001) surface of hole-doped manganites. Phys Rev B 71, 024416.CrossRefGoogle Scholar