Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T13:42:21.879Z Has data issue: false hasContentIssue false

Development of Aberration-Corrected Electron Microscopy

Published online by Cambridge University Press:  03 January 2008

David J. Smith
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA Dedicated to the memory of the late John C. Wheatley
Get access

Abstract

The successful correction of spherical aberration is an exciting and revolutionary development for the whole field of electron microscopy. Image interpretability can be extended out to sub-Ångstrom levels, thereby creating many novel opportunities for materials characterization. Correction of lens aberrations involves either direct (online) hardware attachments in fixed-beam or scanning TEM or indirect (off-line) software processing using either off-axis electron holography or focal-series reconstruction. This review traces some of the important steps along the path to realizing aberration correction, including early attempts with hardware correctors, the development of online microscope control, and methods for accurate measurement of aberrations. Recent developments and some initial applications of aberration-corrected electron microscopy using these different approaches are surveyed. Finally, future prospects and problems are briefly discussed.

Type
REVIEW
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arslan, I., Bleloch, A., Stach, E.A. & Browning, N.D. (2005). Atomic and electronic structure of mixed and partial dislocations in GaN. Phys Rev Lett 94, 025504.Google Scholar
Batson, P.E. (2003). Aberration correction results in the IBM STEM instrument. Ultramicroscopy 96, 239249.Google Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Ångstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Blom, D.A., Allard, L.F., Mishina, S. & O'Keefe, M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.Google Scholar
Chen, J.H., Zandbergen, H.W. & Van Dyck, D. (2004). Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 98, 8197.Google Scholar
Coene, W.M.J. & Denteneer, T. (1991). Improved methods for the determination of the spherical aberration coefficient in high-resolution electron microscopy from micrographs of an amorphous object. Ultramicroscopy 38, 225233.Google Scholar
Coene, W., Janssen, G., Op De Beeck, M. & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.Google Scholar
Coene, W.M.J., Janssen, A.J.E.M.., Denteneer, T.J.J., Op De Beeck, M. & Van Dyck, D. (1994). Focal-variation image reconstruction in field emission TEM. MSA Bull 24, 472486.Google Scholar
Coene, W.M.J., Thust, A., Op De Beeck, M. & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.Google Scholar
Cowley, J.M. (1995). Diffraction Physics, 3rd rev. ed. New York: Elsevier.
Cowley, J.M. & Moodie, A.F. (1960). Fourier images 4. The phase grating. Proc Phys Soc 76, 378384.Google Scholar
Crewe, A.V. (1983). High resolution scanning transmission electron microscopy. Science 221, 325330.Google Scholar
Crewe, A.V. (2004). Some Chicago aberrations. Microsc Microanal 10, 414419.Google Scholar
De Jong, A.F. & Koster, A.J. (1992). Measurement of electron optical parameters for high resolution electron microscopy image interpretation. Scan Microsc 6(Suppl.), 95103.Google Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Electron Microsc 50, 177185.Google Scholar
Erasmus, S.J. & Smith, K.C.A. (1982). An automatic focusing and astigmatism correction system for the SEM and CTEM. J Microsc 127, 185199.Google Scholar
Falke, U., Bleloch, A.L., Falke, M. & Teichert, S. (2004). Atomic structure of a (2×1) reconstructed NiSi2/Si(100) interface. Phys Rev Lett 92, 116103.Google Scholar
Falke, M., Falke, U., Bleloch, A.L., Teichert, S., Beddies, G. & Hinneberg, H.-J. (2005). Real structure of the CoSi2/Si(001) interface studied by dedicated aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 86, 203103.Google Scholar
Gabor, D. (1949). Microscopy by reconstructed wavefronts. Proc Roy Soc A 197, 454487.Google Scholar
Geiger, D., Lichte, H., Linck, M. & Lehmann, M. (2008). Electron holography with CS-corrected transmission electron microscope. Microsc Microanal 14, 6881.Google Scholar
Gontard, L.C., Chang, L.-Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D. & Dunin-Borkowski, R.E. (2007). Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46, 36833685.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998a). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998b). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998c). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Hawkes, P.W. & Kasper, E. (1996). Principles of Electron Optics, Chap. 41. London: Academic.
Hobbs, L.W. (1984). Radiation effects in analysis by TEM. In Quantitative Electron Microscopy, J.N. Chapman, A.J. Craven, Eds. Edinburgh: Scottish Universities Summer School in Physics, p. 399.
Houben, L. (2006). Aberration-corrected HRTEM of defects in strained La2CuO4 thin films grown on SrTiO3. J Mater Sci 41, 44134419.Google Scholar
Houben, L., Thust, A. & Urban, K. (2006). Atomic precision determination of the reconstruction of a 90° tilt boundary in YbA2Cu3O7-δ by aberration corrected HRTEM. Ultramicroscopy 106, 200214.Google Scholar
Ichinose, H., Sawada, H., Takuma, E. & Osaki, M. (1999). Atomic resolution HVEM and environmental noise. J Electron Microsc 48, 887891.Google Scholar
Ishizuka, K. (1994). Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism. Ultramicroscopy 55, 407418.Google Scholar
Ishizuka, K., Tanji, T., Tonomura, A., Ohno, T. & Murayama, Y. (1994). Aberration correction using off-axis holography. II, Beyond the Scherzer limit. Ultramicroscopy 55, 197207.Google Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jia, C.L. & Thust, A. (1999). Investigation of atomic displacements at a −3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy. Phys Rev Lett 82, 50525055.Google Scholar
Jia, C.L. & Urban, K. (2004). Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 20012004.Google Scholar
Kabius, B., Haider, M., Uhlemann, S., Schwan, E., Urban, K. & Rose, H. (2002). First application of a spherical-aberration corrected transmission electron microscope in materials science. J Electon Microsc 51, S51S58.Google Scholar
Kirkland, A.I. & Meyer, R.R. (2004). “Indirect” high-resolution transmission electron microscopy: Aberration measurement and wavefunction reconstruction. Microsc Microanal 10, 401413.Google Scholar
Kirkland, A.I., Meyer, R.R. & Chang, L.-Y.S. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.Google Scholar
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A. & Thust, A. (2001a). Imaging columns of the light elements carbon, nitrogen and oxygen with sub Ångstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Kisielowski, C., Principe, E., Freitag, B. & Hubert, D. (2001b). Benefits of microscopy with super resolution. Physica B 308–310, 10901096.Google Scholar
Koops, H. (1978). Aberration correction in electron microscopy. In Ninth International Congress on Electron Microscopy, Vol. III, Sturgess, J.M., Kalmons, V.I., Ottensmeyer, F.P. & Simon, G.T. (Eds.), pp. 185196. Toronto: Microscopical Society of Canada.
Krivanek, O.L. (1976). A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik 45, 97101.Google Scholar
Krivanek, O.L. (1994). Three-fold astigmatism in high-resolution transmission electron microscopy. Ultramicroscopy 55, 419433.Google Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 111.Google Scholar
Krivanek, O.L. & Mooney, P.E. (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95108.Google Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2003). Towards sub-0.5Å electron beams. Ultramicroscopy 96, 229237.Google Scholar
Krivanek, O.L. & Stadelmann, P. (1995). Effect of 3-fold astigmatism on high-resolution electron micrographs. Ultramicroscopy 60, 103113.Google Scholar
Lehmann, M. (2004). Influence of the elliptical illumination on acquisition and correction of coherent aberrations in high-resolution electron holography. Ultramicroscopy 100, 923.Google Scholar
Lehmann, M. (2005). Exit surface dependence of the wavefunction measured and corrected by means of off-axis electron holography. Phys Stat Sol A 202, 23862396.Google Scholar
Lehmann, M. & Lichte, H. (2002). Tutorial on off-axis electron holography. Microsc Microanal 8, 447466.Google Scholar
Lehmann, M. & Lichte, H. (2005). Electron holographic material analysis at atomic dimensions. Cryst Res Technol 40, 149160.Google Scholar
Lentzen, M. (2006). Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12, 191205.Google Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K. & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Lichte, H. (1991a). Electron image plane off-axis electron holography. Adv Opt Electron Microsc 12, 2591.Google Scholar
Lichte, H. (1991b). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.Google Scholar
Lichte, H. (1992). Electron holography I. Can electron holography reach 0.1nm resolution? Ultramicroscopy 47, 223230.Google Scholar
Lichte, H., Formanek, P., Lenk, A., Linck, M., Matzeck, C., Lehmann, M. & Simon, P. (2007). Electron holography: Applications to materials questions. Annu Rev Mater Res 37, 537588.Google Scholar
Lin, J.A. & Cowley, J.M. (1986). Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 3142.Google Scholar
Meyer, R.R., Kirkland, A.I. & Saxton, W.O. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89109.Google Scholar
Meyer, R.R., Kirkland, A.I. & Saxton, W.O. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of the asymmetric aberrations. Ultramicroscopy 99, 115123.Google Scholar
Müller, H., Uhlemann, S., Hartel, P. & Haider, M. (2006). Advancing the hexapole CS-corrector for the scanning transmission electron microscope. Microsc Microanal 12, 442455.Google Scholar
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741.Google Scholar
O'Keefe, M.A. (2007). Seeing atoms with aberration-corrected sub-Ångstrom microscopy. Ultramicroscopy (in press).Google Scholar
O'Keefe, M.A., Hetherington, C., Wang, Y., Nelson, E., Turner, J., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M. & Thust, A. (2001). Sub-angstrom high-resolution transmission electron microscopy. Ultramicroscopy 89, 215241.Google Scholar
Orchowski, A., Rau, W.D. & Lichte, H. (1995). Electron holography surmounts resolution limit of electron microscopy. Phys Rev Lett 74, 399402.Google Scholar
Overwijk, M.H.F., Bleeker, A.J. & Thust, A. (1997). Correction of three-fold astigmatism for ultra-high-resolution TEM. Ultramicroscopy 67, 163170.Google Scholar
Pennycook, S.J. (2002). Structure determination through Z-contrast microscopy. Adv Imaging Electron Phys 123, 173206.Google Scholar
Pennycook, S.J., Chisholm, M.F., Lupini, A.R., Peng, Y., Varela, M., Van Benthem, K., Borisevich, A., De Jonge, N. & Oxley, M.P. (2006). Aberration-corrected STEM—more than just higher resolution. In Proceedings of the 16th International Microscopy Congress, IMC-16, Ichinose, H. & Sasaki, T. (Eds.). Sapporo, Japan: Publication Committee of IMC-16.
Ramasse, Q.M. & Bleloch, A.L. (2005). Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy 106, 3756.Google Scholar
Ronchi, V. (1964). Firty years of history of a grating interferometer. Appl Opt 3, 437450.Google Scholar
Rose, H. (1994). Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes. Ultramicropscopy 56, 1125.Google Scholar
Saxton, W.O. (1994). What is the focus variation method? Is it new? Is it direct? Ultramicroscopy 55, 171181.Google Scholar
Saxton, W.O. (1995a). Observation of lens aberrations for very high resolution electron microscopy. J. Microsc 179, 201214.Google Scholar
Saxton, W.O. (1995b). Simple prescriptions for estimating three-fold astigmatism. Ultramicroscopy 58, 239243.Google Scholar
Saxton, W.O., Smith, D.J. & Erasmus, S.J. (1983). Procedures for focusing, stigmating and alignment in high resolution electron microscopy. J Microsc 130, 187201.Google Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen [Some defects of electron lenses]. Optik 101, 593603.Google Scholar
Scherzer, O. (1947). Sparische and chromatische korrektur von elektronen-linsen. Optik 2, 114132.Google Scholar
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C. & O'Keefe, M.A. (2003). Atomic resolution of lithium in LiCoO2. Nature Mater 2, 464467.Google Scholar
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.Google Scholar
Smith, D.J., Saxton, W.O., O'Keefe, M.A., Wood, G.J. & Stobbs, W.M. (1983). The importance of beam alignment and beam tilt in high-resolution electron microscopy. Ultramicroscopy 11, 263281.Google Scholar
Smith, K.C.A. (1982). On-line digital computer techniques in electron microscopy: General introduction. J Microsc 127, 316.Google Scholar
Tanaka, N., Yamasaki, J., Usuda, K. & Ikarashi, N. (2003). First observation of SiO2/Si(100) interfaces by spherical aberration-corrected high-resolution transmission electron microscopy. J Electron Microsc 52, 6973.Google Scholar
Tee, W.J., Smith, K.C.A. & Holburn, D.M. (1979). An automatic focusing and stigmating system for the SEM. J Phys E Sci Instrum 12, 3538.Google Scholar
Thust, A., Coene, W.H.J., Op De Beeck, M. & Van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Thust, A., Overwijk, M.H.F., Coene, W.M.J. & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy 64, 249264.Google Scholar
Tillman, K., Houben, L., Thust, U. & Urban, K. (2006). Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: Synergistic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution. J Mater Sci 41, 44204233.Google Scholar
Tillman, K., Thust, A. & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.Google Scholar
Tonomura, A. (1992). Electron-holographic interference microscopy. Adv Phys 41, 59105.Google Scholar
Tonomura, A., Matsuda, T., Endo, J., Todokoro, W. & Komoda, T. (1979). Development of the field-emission electron microscope. J Electron Microsc 28, 111.Google Scholar
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
Van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S.J., Lee, J.-H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.Google Scholar
Van Dyck, D., Op De Beeck, M. & Coene, W. (1993). A new approach to object wave-function reconstruction in electron microscopy. Optik 93, 103107.Google Scholar
Varela, M., Lupini, A.R., Van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E. & Pennycook, S.J. (2006). Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu Rev Mater Res 35, 539569.Google Scholar
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.Google Scholar
Ward, E.P.W., Arslan, I., Midgley, P.A., Bleloch, A.L. & Thomas, J.M. (2005). Direct visualization, by aberration-corrected electron microscopy, of the crystallization of bimetallic nanoparticle catalysts. Chem Comm 46, 58055807.Google Scholar
Watanabe, M., Ackland, D.W., Burrows, A., Kiely, C.J., Williams, D.B., Krivanek, O.L, Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2006). Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12, 515526.Google Scholar
Xu, X., Beckman, S.P., Specht, P., Weber, E.R., Chrzan, D.C., Erni, R.P., Arslan, I., Browning, N., Bleloch, A. & Kisielowski, C. (2005). Distortion and segregation in a dislocation core region at atomic resolution. Phys Rev Lett 95, 145501.Google Scholar
Yamasaki, J., Sawada, H. & Tanaka, N. (2005). First experiments of selected area nano-diffraction from semiconductor interfaces using a spherical aberration corrected TEM. J Electron Microsc 54, 123126.Google Scholar
Zandbergen, H.W. & Van Dyck, D. (2000). Exit wave reconstruction using through focus series of HREM images. Microsc Res Tech 49, 301323.Google Scholar
Zemlin, F., Weiss, K., Schiske, P., Kunath, W. & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.Google Scholar