Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T01:18:08.428Z Has data issue: false hasContentIssue false

Decreased corpus callosum size in sickle cell disease: Relationship with cerebral infarcts and cognitive functioning

Published online by Cambridge University Press:  23 January 2006

JEFFREY SCHATZ
Affiliation:
Department of Psychology, University of South Carolina, Columbia, South Carolina
ROBERT BUZAN
Affiliation:
Department of Psychology, University of South Carolina, Columbia, South Carolina

Abstract

We assessed midsagittal corpus callosum size in sickle cell disease (SCD) and its relationship to lesion volume, lesion location, and cognitive functioning. Twenty-eight children with SCD and 16 demographic controls completed magnetic resonance imaging (MRI) and neuropsychological testing. Corpus callosum (CC) size was smaller for children with silent infarcts (n = 8) or overt stroke (n = 8) than for those without visible infarcts (n = 12) or control participants. Lesion volume was a robust predictor of IQ and other cognitive scores; total CC size did not typically add explanatory power for these measures. The size of the rostral body of the CC, however, independently predicted measures of distractibility, speeded production, and working memory. Posterior CC size was also decreased among many of the children with SCD, even in the absence of visible infarcts in this region. Brain morphology appears to provide additional information about SCD-related effects on the brain above and beyond visible infarcts. (JINS, 2006, 12, 24–33.)

Type
Research Article
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R.J., Ohene-Frempong, K., & Wang, W. (2001). Sickle cell and the brain. In Hematology: American Society of Hematology Education Program 2001, 3146.
Armstrong, F.D., Thompson, R.J., Wang, W., Zimmerman, R., Pegelow, C.H., Miller, S., Moser, F., Bello, J., Hurtig, A., & Vass, K. (1996). Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Pediatrics, 97, 864870.Google Scholar
Atkinson, D.S., Abou-Khalil, B., Charles, P.D., & Welch, L. (1996). Midsagittal corpus callosum area, intelligence, and language dominance in epilepsy. Journal of Neuroimaging, 6, 235239.Google Scholar
Barkovich, A.J. & Kjos, B.O. (1988). Normal postnatal development of the corpus callosum as demonstrated by MR imaging. American Journal of Neuroradiology, 9, 487491.Google Scholar
Ball, T., Schreiber, A., Feige, B., Wagner, M., Lucking, C.H., & Kristeva-Feige, R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 10, 682694.Google Scholar
Bernaudin, F., Verlhac, S., Fréard, F., Roudot-Thoraval, F., Benkerrou, M., Thuret, I., Mardini, R., Vannier, J.P., Ploix, E., Romero, M., Cassé-Perrot, C., Helly, M., Gillard, E., Sebag, G., Kchouk, H., Pracros, J.P., Finck, B., Dacher, J.N., Ichowitz, V., Raybaud, C., Poncet, M., Lesprit, E., Reinert, P.H., & Brugieres, P. (2000). Multicenter prospective study of children with sickle cell disease: Radiographic and psychometric correlation. Journal of Child Neurology, 15, 333343.Google Scholar
Brown, R.T., Davis, P.C., Lambert, R., Hsu, L., Hopkins, K., & Eckman, J. (2000). Neurocognitive functioning and magnetic resonance imaging in children with sickle cell disease. Journal of Pediatric Psychology, 25, 207218.Google Scholar
Clarke, S. & Miklossy, J. (1990). Occipital cortex in man: Organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. Journal of Comparative Neurology, 298, 188214.Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: L. Erlbaum.
Cohen, M.J., Branch, W.B., McKie, V.C., & Adams, R.J. (1994). Neuropsychological impairment in children with sickle cell anemia and cerebrovascular accidents. Clinical Pediatrics, 33, 517524.Google Scholar
Craft, S., Schatz, J., Glauser, T.A., Lee, B., & DeBaun, M.R. (1993). Neuropsychologic effects of stroke in children with sickle cell anemia. Journal of Pediatrics, 123, 712717.Google Scholar
DeBaun, M.R., Schatz, J., Siegel, M.J., Koby, M., Craft, S., Resar, L., Chu, J.Y., Launius, G., Dadash-Zadeh, M., Lee, R.B., & Noetzel, M. (1998). Cognitive screening examinations for silent cerebral infarcts in sickle cell disease. Neurology, 50, 16781682.Google Scholar
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS) Examiner's manual. San Antonio, TX: Psychological Corporation.
de Lacoste, M.C., Kirkpatrick, J.B., & Ross, E.D. (1985). Topography of the human corpus callosum. Journal of Neuropathology and Experimental Neurology, 44, 578591Google Scholar
D'Esposito, M., Ballard, D., Zarahn, E., & Aguirre, G.K. (2000). The role of the prefrontal cortex in sensory memory and motor preparation: An event-related fMRI study. NeuroImage, 11, 400408.Google Scholar
Earley, C.J., Kittner, S.J., Feeser, B.R., Gardner, J., Epstein, A., Wozniak, M.A., Wityk, R., Stern, B.J., Price, T.R., Macko, R.F., Johnson, C., Sloan, M.A., & Buchholz, D. (1998). Stroke in children and sickle-cell disease: Baltimore-Washington Cooperative Young Stroke Study. Neurology, 51, 169176.Google Scholar
Ewing-Cobbs, L., Fletcher, J.M., Levin, H.S., Francis, D.J., Davidson, K., & Miner, M.E. (1997). Longitudinal neuropsychological outcome in infants and preschoolers with traumatic brain injury. Journal of the International Neuropsychological Society, 3, 581591.Google Scholar
Fedrizzi, E., Inverno, M., Bruzzone, M.G., Botteon, G., Saleti, U., & Farinotti, M. (1996). MRI features of cerebral lesions and cognitive functions in preterm spastic diplegic children. Pediatric Neurology, 15, 207212.Google Scholar
Ganesan, V., Ng, V., Chong, W.K., Kirkham, F.G., & Connelly, A. (1999). Lesion volume, lesion location, and outcome after middle cerebral artery territory stroke. Archives of Diseases in Childhood, 81, 295300.Google Scholar
Hynd, G.W., Hall, J., Novey, E.S., Eliopulos, D., Black, K., Gonzalez, J.J., Edmonds, J.E., Riccio, C., & Cohen, M. (1995). Dyslexia and corpus callosum morphology. Archives of Neurology, 52, 3238.Google Scholar
Jäncke, L., Preis, S., & Steinmetz, H. (1999). The relation between forebrain volume and midsagittal size of the corpus callosum in children. Neuroreport, 10, 29812985.Google Scholar
Jäncke, L., Staiger, J.F., Schlaug, G., Huang, Y., & Steinmetz, H. (1997). The relationship between corpus callosum size and forebrain volume. Cerebral Cortex, 7, 4856.Google Scholar
Koshy, M., Thomas, C., & Goodwin, J. (1990). Vascular lesions in the central nervous system in sickle cell disease (neuropathology). Journal of the Association for Academic Minority Physicians, 1, 7178.Google Scholar
Moser, F.G., Miller, S.T., Bello, J.A., Pegelow, C.H., Zimmerman, R.A., Wang, W.C., Ohene-Frempong, K., Schwartz, A., Vichinsky, E.P., & Gallagher, D. (1996). The spectrum of brain MR abnormalities in sickle-cell disease: A report from the Cooperative Study of Sickle Cell Disease. American Journal of Neuroradiology, 17, 965972.Google Scholar
Moses, P., Courchesne, E., Stiles, J., Trauner, D., Egaas, B., & Edwards, E. (2000). Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cerebral Cortex, 10, 12001210.Google Scholar
Palmer, S.L., Goloubeva, O., Reddick, W.E., Glass, J.O., Gajjar, A., Kun, L., Merchant, T.E., & Mulhern, R.K. (2001). Patterns of intellectual development among survivors of pediatric medullablastoma: A longitudinal analysis. Journal of Clinical Oncology, 19, 23022308.Google Scholar
Pandya, D.N. & Seltzer, B. (1986). The topography of commissural fibers. In F. Leporé, M. Ptito, & H.H. Jasper (Eds.), Two hemispheres—one brain: Functions of the corpus callosum (pp. 4773). New York: Liss.
Pavlakis, S.G., Gould, R.J., & Zito, J.L. (1991). Stroke in children. Advances in Pediatrics, 38, 151179.Google Scholar
Pavlakis, S.G., Prohovnik, I., Piomelli, S., & DeVivo, D.C. (1989). Neurologic complications of sickle cell disease. Advances in Pediatrics, 36, 247276.Google Scholar
Peterson, B.S., Vohr, B., Staib, L.H., Cannistraci, C.J., Dolberg, A., Schneider, K.C., Katz, K.H., Westerveld, M., Sparrow, S., Anderson, A.W., Duncan, C.C., Makuch, R.W., Gore, J.C., & Ment, L.R. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. Journal of the American Medical Association, 284, 19391947.Google Scholar
Petit, L., Courtney, S.M., Ungerleider, L., & Haxby, J.V. (1998). Sustained activity in the medial wall during working memory delays. Journal of Neuroscience, 18, 94299437.Google Scholar
Petrides, M. & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249262.Google Scholar
Platt, O.S., Rosenstock, W., & Espeland, M.A. (1984). Influence of sickle hemoglobinopathies on growth and development. New England Journal of Medicine, 311, 712.Google Scholar
Rajapakse, J.C., Giedd, J.N., Rumsey, J.M., Vaituzis, C., Hamburger, S.D., & Rapoport, J.L. (1996). Regional MRI measurements of the corpus callosum: A methodological and developmental study. Brain and Development, 18, 379388.Google Scholar
Rasband, W. (2002). NIH Image v.1.63 (software program). Research Services Branch, National Institutes of Health.
Roland, P.E., Larsen, B., Lassen, N.A., & Skinhof, E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology, 43, 118136.Google Scholar
Rorden, C. (2000). MRIcro, version 1.27 (On-line). Available: http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html.
Schatz, J., Craft, S., Koby, M., Siegel, M.J., Resar, L., Lee, R.R., Chu, J.Y., Launius, G., Dadash-Zadehm, M., & DeBaun, M.R. (1999). Neuropsychologic deficits in children with sickle cell disease and cerebral infarction: Role of lesion site and volume. Child Neuropsychology, 5, 92103.Google Scholar
Schatz, J., White, D.A., Moinuddin, A., Armstrong, M., & DeBaun, M.R. (2002). Lesion burden and cognitive morbidity in children with sickle cell disease. Journal of Child Neurology, 17, 891895.Google Scholar
Schatz, J., Craft, S., Koby, M., & DeBaun, M.R. (2004). Asymmetries in visual-spatial processing following childhood stroke. Neuropsychology, 18, 340352.Google Scholar
Simon, S.R., Meunier, M., Piettre, L., Berardi, A.M., Segebarth, C.M., & Boussaoud, D. (2002). Spatial attention and memory versus motor preparation: Premotor cortex involvement as revealed by fMRI. Journal of Neurophysiology, 88, 20472057.Google Scholar
Spreen, O. & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.
Steen, R.G., Emudianughe, T., Hankins, G.M., Wynn, L.W., Wang, W.C., Xiong, X., & Helton, K.J. (2003). Brain imaging findings in pediatric patients with sickle cell disease. Radiology, 228, 216225.Google Scholar
Steen, R.G., Emudianughe, T., Hunte, M., Glass, J., Wu, S., Xiong, X., & Reddick, W.E. (2005). Brain volume in pediatric patients with sickle cell disease: Evidence of volumetric growth delay? AJNR: American Journal of Neuroradiology, 26, 455462.Google Scholar
Steen, R.G., Reddick, W.E., Mulhern, R.K., Langston, J.W., Ogg, R.J., Bieberich, A.A., Kingsley, P.B., & Wang, W.C. (1998). Quantitative MRI of the brain in children with sickle cell disease reveals abnormalities unseen by conventional MRI. Journal of Magnetic Resonance Imaging, 8, 535543.Google Scholar
Steen, R.G., Xiong, X., Mulhern, R.K., Langston, J.W., & Wang, W.C. (1999). Subtle brain abnormalities in children with sickle cell disease: Relationship to blood hematocrit. Annals of Neurology, 4, 279286.Google Scholar
Strauss, E., Wada, J., & Hunter, M. (1994). Callosal morphology and performance on intelligence tests. Journal of Clinical and Experimental Neuropsychology, 16, 7983.Google Scholar
Tramo, M.J., Loftus, W.C., Stukel, T.A., Green, R.L., Weaver, J.B., & Gazzaniga, M.S. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 50, 12461252.Google Scholar
U.S.Census Bureau. (2002). Census 2000 basics. Washington, DC: U.S. Government Printing Office.
Wang, W., Enos, L., Gallagher, D., Thompson, R., Guarini, L., Vichinsky, E., Wright, E., Zimmerman, R., & Armstrong, F.D., Cooperative Study of Sickle Cell Disease (2001). Neuropsychologic performance in school-aged children with sickle cell disease: A report from the Cooperative Study of Sickle Cell Disease. Journal of Pediatrics, 139, 391397.Google Scholar
Watkins, K.E., Hewes, D.K.M., Kendall, B.E., Kingsley, D.P.E., Evans, J.E.P., Gadian, D.G., Vargha-Khadem, F., & Kirkham, F.J. (1998). Cognitive deficits associated with frontal-lobe infarction in children with sickle cell disease. Developmental Medicine and Child Neurology, 40, 536543.Google Scholar
Wechsler, D. (1991). Wechsler Intelligence Scale for Children, 3rd edition (WISC-III). New York: Psychological Corporation.
White, D.A., Saloria, C.F., Schatz, J., & DeBaun, M.R. (2000). Preliminary study of working memory in children with stroke related to sickle cell disease. Journal of Clinical and Experimental Neuropsychology, 22, 257264.Google Scholar
Witelson, S.F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: A postmortem morphological study. Brain, 112, 799835.Google Scholar
Yu-ling, T., Bing-huan, C., Jiong-da, Y., Jun, Z., Yi-chong, W., Song-hai, C., Zhi-yu, W., Qing-hai, L. (1991). Localization of functional projections from corpus callosum to cerebral cortex. Chinese Medical Journal, 104, 851857.Google Scholar