Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T12:26:08.070Z Has data issue: false hasContentIssue false

Theoretically derived CVLT subtypes in HIV-1 infection: Internal and external validation

Published online by Cambridge University Press:  13 January 2003

Shemira Murji
Affiliation:
University of Windsor, Windsor, Ontario, Canada St. Michael’s Hospital Mental Health Service, Toronto, Canada
Sean B. Rourke
Affiliation:
St. Michael’s Hospital Mental Health Service, Toronto, Canada St. Michael’s Hospital Inner City Health Research Unit, Toronto, Canada University of Toronto, Toronto, Ontario, Canada
Jacobus Donders
Affiliation:
Mary Free Bed Hospital, Grand Rapids, Michigan
Sherri L. Carter
Affiliation:
University of Windsor, Windsor, Ontario, Canada St. Michael’s Hospital Mental Health Service, Toronto, Canada
Douglas Shore
Affiliation:
University of Windsor, Windsor, Ontario, Canada
Byron P. Rourke
Affiliation:
University of Windsor, Windsor, Ontario, Canada Yale University, New Haven, Connecticut

Abstract

The present study sought to delineate empirically derived memory subtypes using the California Verbal Learning Test (CVLT; Delis et al., 1987) in a sample of adults with HIV-1 infection (N 5 154). Confirmatory factor analysis was used to evaluate eight models of the CVLT structure suggested by Wiegner and Donders (1999). A four-factor model, consisting of Attention Span, Learning Efficiency, Delayed Recall, and Inaccurate Recall appeared to be the best fitting model. Variables with the highest factor loadings from the model were entered in a two-stage cluster analysis. Four reliable CVLT clusters or subtypes were identified: Normal, Atypical, Subsyndromal, and Frontal-striatal. Internal and external validation of subtypes demonstrated that clusters were stable and clinically interpretable. Subtypes were meaningfully related to neuropsychological functioning, and to some extent, depressive symptomatology. Subtypes did not differ significantly with respect to subjective neurocognitive complaints and markers of HIV-1 disease. The present findings highlight the heterogeneity of memory profiles in HIV-1 infection and support a frontal-striatal conceptualization of verbal memory performance. The identification of robust HIV-1 memory subtypes may have important implications for the clinical management of adults infected with HIV-1 infection. (JINS, 2003, 9, 1–16.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Academy of Neurology (AAN). (1991). Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection: Report of a working group of the American Academy of Neurology AIDS Task Force. Neurology, 41, 778–785.10.1212/WNL.41.6.778CrossRefGoogle Scholar
Arbuckle, J.L. & Wothke, W. (1999). AMOS 4.0 user's guide. Chicago: SmallWaters Corporation.Google Scholar
Back, C., Miller, B., & Cummings, J. (1998). Neurobiological basis of behavioral changes in HIV-1 encephalopathy. In W. G. van Gorp & S. L. Buckingham (Eds.), Practitioner's guide to the neuropsychiatry of HIV/AIDS (pp. 42–64). New York: The Guildford Press.Google Scholar
Basso, M.R. & Bornstein, R.A. (2000a). Effects of immunosuppression and disease severity upon neuropsychological function in HIV infection. Journal of Clinical and Experimental Neuropsychology, 22, 104–114.10.1076/1380-3395(200002)22:1;1-8;FT104CrossRefGoogle Scholar
Basso, M.R. & Bornstein, R.A. (2000b). Estimated premorbid intelligence mediates neurobehavioral change in individuals infected with HIV across 12 months. Journal of Clinical and Experimental Neuropsychology, 22, 208–218.10.1076/1380-3395(200004)22:2;1-1;FT208CrossRefGoogle Scholar
Beason-Hazen, B.S., Nasrallah, H.A., & Bornstein, R.A. (1994). Self-report of symptoms and neuropsychological performance in asymptomatic HIV-positive individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 6, 43–49.Google Scholar
Beck, A.T. & Steer, R.A. (1993). Beck Depression Inventory Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Becker, J.T., Caldararo, R., Lopez, O.L., Dew, M.A., Dorst, S.K., & Banks, G. (1995). Qualitative features of the memory deficit associated with HIV-1 infection and AIDS: Cross-validation of a discriminant function classification scheme. Journal of Clinical and Experimental Neuropsychology, 17, 134–142.10.1080/13803399508406588CrossRefGoogle Scholar
Bentler, P.M. (1989). EQS structural equation program. Los Angeles, CA: BMDP Statistical Software.Google Scholar
Bornstein, R.A., Nasrallah, H.A., Para, M.F., Whitacre, C.C., Rosenberger, P., & Fass, R.J. (1993). Neuropsychological performance in symptomatic and asymptomatic HIV-1 infection. AIDS, 7, 519–524.10.1097/00002030-199304000-00011CrossRefGoogle Scholar
Browne, M.W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & G. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.Google Scholar
Bryant, F.B. & Yarnold, P.R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L.G. Grimm & P.R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99–136). Washington, DC: American Psychological Association.Google Scholar
Burton, B.D., Mittenberg, W., & Burton, C.A. (1993). Confirmatory factor analysis of the Wechsler Memory Scale–Revised standardization sample. Archives of Clinical Neuropsychology, 8, 467–475.10.1093/arclin/8.6.467CrossRefGoogle Scholar
Burton, B.D., Mittenberg, W., Gold, S., & Drabman, R. (1999). A structural equation analysis of the Wide Range Assessment of Memory and Learning in a clinical sample. Child Neuropsychology, 5, 34–40.10.1076/chin.5.1.34.7077CrossRefGoogle Scholar
Butters, N., Grant, I., Haxby, J., Judd, L.L., Martin, A., McClelland, J., Pequegnat, W., Schacter, D., & Stover, E. (1990). Assessment of AIDS-related cognitive changes: Recommendations of the NIMH Workshop on Neuropsychological Assessment Approaches. Journal of Clinical and Experimental Neuropsychology, 12, 963–978.10.1080/01688639008401035CrossRefGoogle Scholar
Castellon, S.A., Hinkin, C.H., & Myers, H.F. (2000). Neuropsychiatric disturbance is associated with executive dysfunction in HIV-1 infection. Journal of the International Neuropsychological Society, 6, 336–347.10.1017/S1355617700633088CrossRefGoogle Scholar
Centers for Disease Control and Prevention (1992). Centers for Disease Control 1993 revised classification system for HIV-1 infection and expanded surveillance case definition for AIDS among adolescents and adults. Morbidity and Mortality Weekly Report, 41, 1–10.Google Scholar
Chang, L., Speck, O., Miller, E.N., Braun, J., Jovicich, J., Koch, C., Itti, L., & Ernst, T. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57, 1001–1007.10.1212/WNL.57.6.1001CrossRefGoogle Scholar
Chelune, G.J., Heaton, R.K., & Lehman, R.A.W. (1986). Neuropsychological and personality correlates of patients' complaints of disability. In R. E. Tarter & G. Goldstein (Eds)., Advances in clinical neuropsychology, Vol. 3. (pp. 95–126). New York, NY: Plenum Press.Google Scholar
Crosson, B. (1992). Subcortical neuroanatomy and memory. In Subcortical functions in language and memory (pp. 149–172). New York: The Guildford Press.Google Scholar
Cummings, J.L. (1993a). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.10.1001/archneur.1993.00540080076020CrossRefGoogle Scholar
Cummings, J.L. (1993b). The neuroanatomy of depression. Journal of Clinical Psychiatry, 54 (Suppl.), S14–S20.Google Scholar
Curtiss, G., Vanderploeg, R.D., Spencer, J., & Salazar, A.M. (2001). Patterns of verbal learning and memory in traumatic brain injury. Journal of the International Neuropsychological Society, 7, 574–585.CrossRefGoogle Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Research edition. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (2000). California Verbal Learning Test: Second edition. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D.C., Massman, P.J., Butters, N., & Salmon, D.P. (1991). Profiles of demented and amnesic patients on the California Verbal Learning Test: Implications for the assessment of memory disorders. Psychological Assessment, 3, 19–26.CrossRefGoogle Scholar
Delis, D.C., Ryan, L., Peavy, G., White, D., Heaton, R., Atkinson, J.H., Butters, N., Chandler, J.L., Salmon, D.P., McCutchan, J.A., Stout, J., Grant, I., Mehta, & P., the HNRC Group. (1995). Do patients with HIV-associated minor cognitive/motor disorder exhibit a “subcortical” memory profile? Evidence using the California Verbal Learning Test. Assessment, 2, 151–165.10.1177/107319119500200205CrossRefGoogle Scholar
DeLuca, J.W., Adams, K.M., & Rourke, B.P. (1991). Methodological and statistical issues in cluster analysis. In B. P. Rourke (Ed.), Neuropsychological validation of learning disability subtypes (pp. 45–54). New York: The Guildford Press.Google Scholar
Deshpande, S.A., Millis, S.R., Reeder, K.P., Fuerst, D., & Ricker, J.H. (1996). Verbal learning subtypes in traumatic brain injury: A replication. Journal of Clinical and Experimental Neuropsychology, 18, 836–842.10.1080/01688639608408306CrossRefGoogle Scholar
Donders, J. (1996). Cluster subtypes in the WISC–III standardization sample: Analysis of factor index scores. Psychological Assessment, 8, 312–318.10.1037/1040-3590.8.3.312CrossRefGoogle Scholar
Donders, J. (1999). Structural equation analysis of the California Verbal Learning Test–Children's Version in the standardization sample. Developmental Neuropsychology, 15, 395–406.10.1080/87565649909540757CrossRefGoogle Scholar
Everitt, B. (1980). Cluster analysis (2nd ed.). New York: Halstead Press.Google Scholar
Ferrando, S., van Gorp, W., McElhiney, M., Goggin, K., Sewell, M., & Rabkin, J. (1998). Highly active antiretroviral treatment in HIV infection: Benefits for neuropsychological function. AIDS, 12, F65–F70.10.1097/00002030-199808000-00002CrossRefGoogle Scholar
Francis, D.J. (1988). An introduction to structural equation models. Journal of Clinical and Experimental Neuropsychology, 10, 623–639.10.1080/01688638808402800CrossRefGoogle Scholar
Fridlund, A.J. & Delis, D.C. (1987). IBM user's guide for the CVLT. New York: The Psychological Corporation.Google Scholar
Fuerst, D.R. & Rourke, B.P. (1995). Psychosocial functioning of children with learning disabilities at three age levels. Child Neuropsychology, 1, 38–55.10.1080/09297049508401341CrossRefGoogle Scholar
Grant, I., Marcotte, T.D., Heaton, & R.K., the HNRC Group. (1999). Neurocognitive complications of HIV disease. Psychological Science, 10, 191–195.10.1111/1467-9280.00132CrossRefGoogle Scholar
Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary, NC: SAS Institute.Google Scholar
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., McCutchan, J.A., Taylor, M.J., Kelly, M.D., Ellis, R.J., Wolfson, T., Velin, R., Marcotte, T.D., Hesselink, J.R., Jernigan, T.L., Chandler, J., Wallace, M., Abramson, & I., the HNRC Group. (1995). The HNRC 500: Neuropsychology of HIV-1 infection at different disease stages. Journal of the International Neuropsychological Society, 1, 231–251.10.1017/S1355617700000230CrossRefGoogle Scholar
Hinkin, C.H., Castellon, S.A., & Hardy, D.J. (2000). Dual task performance in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 22, 16–24.10.1076/1380-3395(200002)22:1;1-8;FT016CrossRefGoogle Scholar
Hinkin, C.H., Castellon, S.A., van Gorp, W.G., & Satz, P. (1998). Neuropsychological features of HIV disease. In W.G. van Gorp & S.L. Buckingham (Eds.), Practitioner's guide to the neuropsychiatry of HIV/AIDS (pp. 1–41). New York: The Guildford Press.Google Scholar
Hinkin, C.H., van Gorp, W.G., Satz, P., Marcotte, T., Durvasula, R.S., Wood, S., Campbell, L., & Baluda, M.R. (1996). Actual versus self-reported cognitive dysfunction in HIV-1 infection: Memory-metamemory dissociations. Journal of Clinical and Experimental Neuropsychology, 18, 431–443.10.1080/01688639608408999CrossRefGoogle Scholar
Johnson, S.C., Saykin, A.J., Flashman, L.A., McAllister, T.W., & Sparling, M.B. (2001). Brain activation on fMRI and verbal memory ability: Functional neuroanatomic correlates of CVLT performance. Journal of the International Neuropsychological Society, 7, 55–62.10.1017/S135561770171106XCrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia: Lea & Febiger.Google Scholar
Kelloway, E.K. (1998). Using LISREL for structural equation modeling. Thousand Oaks, CA: Sage.Google Scholar
Kline, R.B. (1998). Principles and practice of structural equation modeling. New York: The Guildford Press.Google Scholar
Kløve, H. (1963). Clinical neuropsychology. In F.M. Forster (Ed.), The medical clinics of North America. New York: Saunders.Google Scholar
Lichter, D.G. & Cummings, J.L. (2001). Introduction and overview. In D.G. Lichter & J.L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 1–43). New York: The Guildford Press.Google Scholar
Liotti, M. & Mayberg, H.S. (2001). Role of functional neuroimaging in the neuropsychology of depression. Journal of Clinical and Experimental Neuropsychology, 23, 121–136.10.1076/jcen.23.1.121.1223CrossRefGoogle Scholar
Maj, M., Satz, P., Janssen, R., Zaudig, M., Starace, F., D'Elia, L., Sughondhabirom, B., Mussa, M., Naber, D., Ndetei, D., Schulte, G., & Sartorius, N. (1994). WHO neuropsychiatric AIDS study, cross-sectional phase II: Neuropsychological and neurological findings. Archives of General Psychiatry, 51, 51–61.10.1001/archpsyc.1994.03950010051007CrossRefGoogle Scholar
Mapou, R.L., Law, W.A., Martin, A., Kampen, D., Salazar, A.M., & Rundell, J.R. (1993). Neuropsychological performance, mood, and complaints of cognitive and motor difficulties in individuals infected with the human immunodeficiency virus. Journal of Neuropsychiatry and Clinical Neurosciences, 5, 86–93.Google Scholar
Marcotte, T.D., Grant, I., Atkinson, J.H., & Heaton, R.K. (2001). Neurobehavioral complications of HIV infection. In R.E. Tartar et al. (Eds.), Medical neuropsychology (2nd ed., pp. 285–331). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Martin, E.M., Sullivan, T.S., Reed, R.A., Fletcher, T.A., Pitrak, D.L., Weddington, W., & Harrow, M. (2001). Auditory working memory in HIV-1 infection. Journal of the International Neuropsychological Society, 7, 20–26.10.1017/S1355617701711022CrossRefGoogle Scholar
Maruyama, G.M. (1997). Basics of structural equation modeling. Thousand Oaks, CA: Sage.Google Scholar
Massman, P.J., Delis, D.C., Butters, N., Dupont, R.M., & Gillin, J.C. (1992). The subcortical dysfunction hypothesis of memory deficits in depression: Neuropsychological validation in a subgroup of patients. Journal of Clinical and Experimental Neuropsychology, 14, 687–706.10.1080/01688639208402856CrossRefGoogle Scholar
Mayberg, H.S. (1994). Frontal lobe dysfunction in secondary depression. Journal of Neuropsychiatry and Clinical Neurosciences, 6, 243–250.Google Scholar
Miller, E.N., Selnes, O.A., McArthur, J.C., Satz, P., Becker, J.T., Cohen, B.A., Sheriden, K., Machado, A.M., Van Gorp, W.G., & Visscher, B. (1990). Neuropsychological performance in HIV-1 infected homosexual men: The Multicenter AIDS Cohort Study (MACS). Neurology, 40, 197–203.10.1212/WNL.40.2.197CrossRefGoogle Scholar
Millis, S.R., Malina, A.C., Bowers, D.A., & Ricker, J.H. (1999). Confirmatory factor analysis of the Wechsler Memory Scale–III. Journal of Clinical and Experimental Neuropsychology, 21, 87–93.10.1076/jcen.21.1.87.937CrossRefGoogle Scholar
Millis, S.R. & Ricker, J.H. (1994). Verbal learning patterns in moderate and severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 16, 498–507.10.1080/01688639408402661CrossRefGoogle Scholar
Morris, R., Blashfield, R., & Satz, P. (1981). Neuropsychology and cluster analysis: Potentials and problems. Journal of Clinical Neuropsychology, 3, 79–99.10.1080/01688638108403115CrossRefGoogle Scholar
Morris, R.D. & Fletcher, J.M. (1988). Classification in neuropsychology: A theoretical framework and research paradigm. Journal of Clinical and Experimental Neuropsychology, 10, 640–658.10.1080/01688638808402801CrossRefGoogle Scholar
Paulsen, J.S., Heaton, R.K., Sadek, J.R., Perry, W., Delis, D.C., Braff, D., Kuck, J., Zisook, S., & Jeste, D.V. (1995). The nature of learning and memory impairments in schizophrenia. Journal of the International Neuropsychological Society, 1, 88–99.10.1017/S135561770000014XCrossRefGoogle Scholar
Peavy, G., Jacobs, D., Salmon, D.P., Butters, N., Delis, D.C., Taylor, M., Massman, P., Stout, J.C., Heindel, W.C., Kirson, D., Atkinson, J.H., Chandler, J.L., Grant, & I., and the HNRC Group. (1994). Verbal memory performance of patients with human immunodeficiency virus infection: Evidence of subcortical dysfunction. Journal of Clinical and Experimental Neuropsychology, 16, 508–523.10.1080/01688639408402662CrossRefGoogle Scholar
Reitan, R.M. & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. (2nd ed.). Tucson, AZ: Neuropsychology Press.Google Scholar
Roth, D.L., Conboy, T.J., Reeder, K.P., & Boll, T.J. (1990). Confirmatory factor analysis of the Wechsler Memory Scale-Revised in a sample of head-injured patients. Journal of Clinical and Experimental Neuropsychology, 12, 834–842.Google Scholar
Rourke, S.B., Halman, M.H., & Bassel, C. (1999a). Neuropsychiatric correlates of memory-metamemory dissociations in HIV-infection. Journal of Clinical and Experimental Neuropsychology, 21, 757–768.10.1076/jcen.21.6.757.852CrossRefGoogle Scholar
Rourke, S.B., Halman, M.H., & Bassel, C. (1999b). Neurocognitive complaints in HIV-infection and their relationship to depressive symptoms and neuropsychological functioning. Journal of Clinical and Experimental Neuropsychology, 21, 737–756.10.1076/jcen.21.6.737.863CrossRefGoogle Scholar
Sacktor, N.C., Bacellar, H., Hoover, D.R., Nance-Sproson, T.E., Selnes, O.A., Miller, E.N., Dal Pan, G.J., Kleeberger, C., Brown, A., Saah, A., & McArthur, J.C. (1996). Psychomotor slowing in HIV-1 infection: A predictor of dementia, AIDS and death. Journal of Neurovirology, 2, 404–410.10.3109/13550289609146906CrossRefGoogle Scholar
Satz, P., Morgenstern, H., Miller, E.N., Selnes, O.A., McArthur, J.C., Cohen, B.A., Wesch, J., Becker, J.T., Jacobson, L., D'Elia, & L.F., et al. (1993). Low education as a possible risk factor for cognitive abnormalities in HIV-1: Findings from the multicenter AIDS Cohort Study (MACS). Journal of Acquired Immunodeficiency Syndrome, 6, 503–511.CrossRefGoogle Scholar
Savage, C.R., Deckersbach, T., Heckers, S., Wagner, A.D., Schacter, D.L., Alpert, N.M., Fischman, A.J., & Rauch, S.L. (2001). Prefrontal regions supporting spontaneous and directed application of verbal learning strategies. Brain, 124, 219–231.10.1093/brain/124.1.219CrossRefGoogle Scholar
Selnes, O.A., Jacobson, L., Machado, A.M., Becker, J.T., Wesch, J., Miller, E.N., Visscher, B., & McArthur, J.C. (1991). Normative data for a brief neuropsychological screening battery. Multicenter AIDS Cohort Study. Perceptual and Motor Skills, 73, 539–550.10.2466/pms.1991.73.2.539CrossRefGoogle Scholar
Shear, P.K., Wells, C.T., & Brock, A.M. (2000). The effect of semantic cueing on CVLT performance in healthy participants. Journal of Clinical and Experimental Neuropsychology, 22, 649–655.10.1076/1380-3395(200010)22:5;1-9;FT649CrossRefGoogle Scholar
Smith, A. (1973). Symbol Digit Modalities Test Manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Sokal, R. & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38, 1409–1438.Google Scholar
Sorensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation of Danish commons. Biologiske Skrifter, 5, 1–34.Google Scholar
Spreen, O. & Strauss, E. (1991). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Stern, R.A., Silva, S.G., Chaisson, N., & Evans, D.L. (1996). Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Archives of Neurology, 53, 148–153.10.1001/archneur.1996.00550020052015CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Palumbo, C.L., Buckle, L., Sayer, L., & Pogue, J. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 3, 355–373.10.1037/0894-4105.8.3.355CrossRefGoogle Scholar
van Gorp, W.G., Hinkin, C.H., Satz, P., Miller, E.N., Weisman, J., Holston, S., Drebing, C., Marcotte, T.D., & Dixon, W. (1993). Subtypes of HIV-related neuropsychological functioning: A cluster analysis approach. Neuropsychology, 7, 62–72.10.1037/0894-4105.7.1.62CrossRefGoogle Scholar
Villa, G., Solida, A., Moro, E., Tavolozza, M., Antinori, A., De Luca, A., Murri, R., & Tamburrini, E. (1996). Cognitive impairment in asymptomatic stage of HIV-1 infection: A longitudinal study. European Journal of Neurology, 36, 125–133.CrossRefGoogle Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.10.1080/01621459.1963.10500845CrossRefGoogle Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised manual. New York: The Psychological Corporation.Google Scholar
White, D.A., Taylor, M.J., Butters, N., Mack, C., Salmon, D.P., Peavy, G., Ryan, L., Heaton, R.K., Atkinson, J.H., Chandler, J.L., Grant, & I., the HNRC Group. (1997). Memory for verbal information in individuals with HIV-associated dementia complex. Journal of Clinical and Experimental Neuropsychology, 19, 357–366.10.1080/01688639708403864CrossRefGoogle Scholar
Wiegner, S. & Donders, J. (1999). Performance on the California Verbal Learning Test after traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 21, 159–170.10.1076/jcen.21.2.159.925CrossRefGoogle Scholar
Woodard, J.L. (1993). Confirmatory factor analysis of the Wechsler Memory Scale–Revised in a mixed clinical population. Journal of Clinical and Experimental Neuropsychology, 15, 968–973.10.1080/01688639308402611CrossRefGoogle Scholar