Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:25:33.087Z Has data issue: false hasContentIssue false

Structural and magnetic properties of nanograined Ni0.7−yZn0.3CayFe2O4 spinels

Published online by Cambridge University Press:  10 June 2014

Mahmoud Hosseny Makled*
Affiliation:
Faculty of Science, Physics Department, Benha University, Benha 13518, Egypt
Nabil M. Shash
Affiliation:
Faculty of Science, Physics Department, Benha University, Benha 13518, Egypt
Hesham K. Abdelsalam
Affiliation:
Faculty of Science, Physics Department, Benha University, Benha 13518, Egypt
Get access

Abstract

Nanocrystalline Ni0.7−yZn0.3CayFe2O4 (0.0 ≤ y ≤ 0.7) has been obtained by soft coprecipitation method at different calcination temperatures. The influence of Ca2+ content and heat treatment on microstructure and magnetic properties are investigated using X-ray diffraction (XRD), thermal analysis, scanning electron microscope (SEM), atomic force microscope (AFM) and infrared (IR) spectroscopy. XRD analysis reveals single phase of spinel structure in ferrite with y = 0.2. An endothermic peak in DSC curve is appeared around 700 °C for all compositions due to collapse of the defective surface layer covers the grains. IR spectra for precursors or calcined ferrites shows the existence of bands characteristic for cubic spinel phase. The higher values for specific saturation magnetization (Ms) was obtained for ferrites calcined at 600 °C. Paramagnetic ordered particles was dominated when Ca2+ content increases more than 0.3. On the other hand, the coercivity of the present ferrites is strongly depends on Ca2+ content than calcination temperature.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mazen, S.A., El Taher, A.M., J. Alloys Compd. 498, 19 (2010)CrossRef
Azadmanjiri, J., Salehani, H.K., Barati, M.R., Farazan, F., Mater. Lett. 61, 84 (2007)CrossRef
Yue, Z., Li, L., Zhou, J., Zhang, H., Gui, Z., Mater. Sci. Eng. B 64, 68 (1999)CrossRef
Trivedi, U.N., Jani, K.H., Modi, K.B., Joshi, H.H., Mater. Sci. Lett. 19, 1271 (2000)CrossRef
Fua, X., Geb, H., Xinga, Q., Pengb, Z., Mater. Sci. Eng. B 176, 926 (2011)CrossRef
Duan, X.F., Lieber, C.M., Adv. Mat. 12, 298 (2000)3.0.CO;2-Y>CrossRef
Mirzaee, O., Shafyei, A., Golozar, M.A., Shokrollahi, H., J. Alloys Compd. 461, 312 (2008)CrossRef
Chena, L., Daib, H., Shenc, Y., Baic, J., J. Alloys Compd. 491, L33 (2010)CrossRef
Kakihana, M., J. Sol-Gel Sci. Technol. 6, 7 (1996)CrossRef
Iqbal, M.J., Ashiq, M.N., Gul, I.H., J. Magn. Magn. Mater. 322, 1720 (2010)CrossRef
Bai, Y., Zhou, J., Gui, Z., Li, L., J. Magn.Magn. Mater. 246, 140 (2002)CrossRef
Meena, R.S., Bhattachrya, S., Chatterjee, R., J. Magn. Magn. Mater. 322, 2908 (2010)CrossRef
Abbas, S.M., Dixit, A.K., Chatterjee, R., Goel, T.C., J. Magn. Magn. Mater. 309, 20 (2007)CrossRef
Zhoua, X., Jiangc, J., Lib, L., Xub, F., J. Magn. Magn. Mater. 314, 7 (2007)CrossRef
Rezlescu, N., Rezlescu, L., Popa, P.D., Rezlescu, E., J. Magn. Magn. Mater. 215–216, 194 (2000)CrossRef
Yonghong, C., Xiaoyong, L., Yanzhi, D., Xingqin, L., Guangyano, M., J. Rare Earth. 28, 153 (2010)
Gillot, B., Thiebaut, D., Laarj, M., Thermochim. Acta 342, 167 (1999)CrossRef
Jaiswal, N., Kumar, D., Upadhyay, S., Parkash, O., J. Alloys Compd. 577, 456 (2013)CrossRef
Verma, K.C., Singh, V.P., Ram, M., Shah, J., Kotnala, R.K., J. Magn. Magn. Mater. 323, 3271 (2011)CrossRef
Ahmed, M.A., Okasha, N., El-Dek, S.I., Ceram. Int. 36, 1529 (2010)CrossRef
Du, J., Yao, G., Liu, Y., Ma, J., Zu, G., Ceram. Int. 38, 1707 (2012)CrossRef
Jalaly, M., Enayati, M.H., Karimzadeh, F., Kameli, P., Powder Technol. 193, 150 (2009)CrossRef
Brabers, V.A.M., Phys. Status Solidi 33, 563 (1969)CrossRef
Bayoumy, W.A.A., J. Mol. Struct. 1056–1057, 285 (2014)CrossRef
Saafan, S.A., Meaz, T.M., El-Ghazzawy, E.H., ElNimr, M.K., Ayad, M.M., Bakr, M., J. Magn. Magn. Mater. 322, 2369 (2010)CrossRef
Bamzai, K.K., Kour, G., Kaur, B., Kulkarni, S.D., J. Magn. Magn. Mater. 327, 159 (2013)CrossRef
Gabal, M.A., Al-luhaibi, R.S., Al Angari, Y.M., J. Hazard. Mater. 246–247, 227 (2013)CrossRef
Makled, M.H., Matsui, T., Tsuda, H., Mabuchi, H., El-Mansy, M.K., Morii, K., J. Jpn Ceram. Soc. 112, 200 (2004)CrossRef
Karim, A., Shirsath, S.E., Shukla, S.J., Jadhav, K.M., Nucl. Instrum. Methods B 268, 2706 (2010)CrossRef
Krishna, K.R., Kumar, K.V., Ravindernathgupta, C., Ravinder, D., Advances in Materials Physics and Chemistry 2, 149 (2012)CrossRef
Sattar, A.A., Agami, W.R., J. Alloys Compd. 496, 341 (2010)CrossRef
Msomia, J.Z., Moyoa, T., Doylea, T.B., J. Magn. Magn. Mater. 310, 2534 (2007)CrossRef
Jiang, J., Li, L., Xu, F., Xie, Y., Mater. Sci. Eng. B 137, 166 (2007)CrossRef
Cullity, B.D., Introduction to Magnetic Materials (Addison-Wesley Reading, MA, 1972)Google Scholar
Hadjipanayis, G.C., Siegel, R.W. (Eds.), Nanophase Material Synthesis Properties – Applications (Kluwer Academic Publishers, Dordrecht, 1994)Google Scholar
Khan, H.M., Islam, M.U., Xu, Y., Iqbal, M.A., Ali, I., J. Alloys Compd. 589, 258 (2014)CrossRef