Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T10:53:30.766Z Has data issue: false hasContentIssue false

Resonant features of planar Faraday metamaterial with high structural symmetry

Study of properties of a 4-fold array of planar chiral rosettes placed on a ferrite substrate

Published online by Cambridge University Press:  26 February 2013

Sergey Y. Polevoy
Affiliation:
Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12, Proskura St., Kharkiv 61085, Ukraine
Sergey L. Prosvirnin
Affiliation:
Institute of Radioastronomy, National Academy of Sciences of Ukraine, 4, Krasnoznamennaya St., Kharkiv 61002, Ukraine School of Radio Physics, Karazin Kharkiv National University, 4, Svobody Square, Kharkiv 61077, Ukraine
Sergey I. Tarapov*
Affiliation:
Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12, Proskura St., Kharkiv 61085, Ukraine
Vladimir R. Tuz
Affiliation:
Institute of Radioastronomy, National Academy of Sciences of Ukraine, 4, Krasnoznamennaya St., Kharkiv 61002, Ukraine School of Radio Physics, Karazin Kharkiv National University, 4, Svobody Square, Kharkiv 61077, Ukraine
Get access

Abstract

The transmission of electromagnetic wave through a planar chiral structure, loaded with the gyrotropic medium being under an action of the longitudinal magnetic field, is studied. The frequency dependence of the metamaterial resonance and the angle of rotation of the polarization plane are obtained. We demonstrate both theoretically and experimentally a resonant enhancement of the Faraday rotation. The ranges of frequency and magnetic field strength are defined, where the angle of polarization plane rotation for the metamaterial is substantially higher than that one for a single ferrite slab.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Katsenelenbaum, B.Z., Korshunova, E.N., Sivov, A.N., Shatrov, A.D., Phys.-Uspekhi 40, 1149 (1997)CrossRef
Serdyukov, A., Semchenko, I., Tretyakov, S., Sihvola, A., Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science Publishers, Amsterdam, 2001)Google Scholar
Hecht, L., Barron, L.D., Chem. Phys. Lett. 225, 525 (1994)CrossRef
Hecht, L., Barron, L.D., J. Mol. Struct. 348, 217 (1995)CrossRef
Arnaut, L.R., Davis, L.E., in Progress in ElectromagneticResearch Symposium (PIERS 1995) (Seattle, WA, 1995), p. 165Google Scholar
Arnaut, L.R., J. Electromagn.Waves Appl. 11, 1459 (1997)CrossRef
Prosvirnin, S.L., in Proceedings of 7th International Conference on Complex Media “Bianisotropics-98”, edited by Jacob, A.F., Reinert, J. (Braunschweig), Germany, 1998), pp. 185188Google Scholar
Zouhdi, S., Couenon, G.E., Fourrier-Lamer, A., IEEE Trans.Antennas Propagat. 47, 1061 (1999)CrossRef
Prosvirnin, S.L., Zheludev, N.I., Phys. Rev. E 71, 037603 (2005)CrossRef
Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P., Svirko, Y., Appl. Phys. Lett. 83, 234 (2003)CrossRef
Prosvirnin, S.L., Zheludev, N.I., J. Opt. A: Pure Appl. Opt.11, 074002 (2009)CrossRef
Prosvirnin, S.L., Dmitriev, V.A., Eur. Phys. J. Appl. Phys. 49, 33005 (2010)CrossRef
Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O.A., Murzina, T.V., Fedyanin, A.A., Granovsky, A.B., J. Phys. D: Appl. Phys. 39, 151 (2006)CrossRef
Girich, A.A., Polevoy, S.Y., Tarapov, S.I., Merzlikin, A.M., Granovsky, A.B., Belozorov, D.P., SSP 190, 365 (2012)CrossRef
Kumar, N., Strikwerda, A.C., Fan, K., Zhang, X., Averitt, R.D., Planken, P.C.M., Adam, A.J.L., Optics Express 20, 11277 (2012)CrossRef
Collin, R.E., Foundation for Microwave Engineering, 2nd edn. (Wiley-Interscience, New York, 2001)CrossRefGoogle Scholar
Gurevich, A.G., Ferrites at Microwave Frequencies (Heywood, London, 1963)Google Scholar
Schlomann, E., J. Appl. Phys. 41, 204 (1970)CrossRef
Green, J., Sandy, F., IEEE Trans. Microwave Theor. Tech., MTT-22, 641 (1974)CrossRef
Prosvirnin, S.L., J. Commun. Technol. Electron. 44, 635 (1999)
Tarapov, S.I., Machekhin, Y.P., Zamkovoy, A.S., Magnetic Resonance for Optoelectronic Materials Investigating (Collegium, Kharkov, 2008)Google Scholar