Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T17:22:09.550Z Has data issue: false hasContentIssue false

Effect of Ag-content on structure, corrosion behaviour and mechanical properties of Sn-9Zn lead-free solder alloy

Published online by Cambridge University Press:  30 November 2010

El Said Gouda*
Affiliation:
Department of Solid State Physics, National Research Center, Dokki, Egypt Physics Department, Faculty of Science, Jazan University, Jazan, KSA
H. Abdel Aziz
Affiliation:
Physics Department, Faculty of Science, Helwan University, Helwan, Egypt
Y. El Gendy
Affiliation:
Physics Department, Faculty of Science, Helwan University, Helwan, Egypt
F. Saad Allah
Affiliation:
Department of Solid State Physics, National Research Center, Dokki, Egypt
M. Hammam
Affiliation:
Physics Department, Faculty of Science, Helwan University, Helwan, Egypt
Get access

Abstract

The effect of (0.5–3.5) wt.% Ag additions on microstructure, melting, corrosion and mechanical properties of Sn-9Zn eutectic lead-free solder alloy has been studied and analyzed. The study included X-ray diffraction and scanning electron microscopy (SEM) to identify the microstructure of these alloys. The results showed that, continuous additions of Ag caused formation of Ag-Zn and Ag-Sn compounds which led to decrease the precipitations of Zn in Sn-matrix. These compounds led to increase the melting point of the alloys, which confirmed by the formation of small endothermic peaks in the higher temperature range followed the main peak of the DTA curves. Also, the DTA measurements confirmed that the alloy of composition Sn-9Zn-3.5Ag is the ternary eutectic alloy. Vicker's micro-hardness number of Sn-9Zn alloy increases with small additions of 0.5 and 1 wt.% Ag. Furthermore, it decreases to lower values with further increase of Ag content. Also, micro-creep behaviour, creep rate and corrosion behaviour of the Sn-9Zn-Ag alloys have been measured at room temperature.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abtew, M., Selvaduray, G., Mater. Sci. Eng. R 27, 95 (2000) CrossRef
Zeng, K., Tu, N., Mater. Sci. Eng. R 38, 55 (2000) CrossRef
Islam, M.N., Chan, Y.C., Rizvi, M.J., Jillek, W., J. Alloys Compd. 400, 136 (2005) CrossRef
Kamal, M., Meikhail, M.S., El-Bediwi, A.B., Gouda, E.S., Radiat. Effects Def. Solids 160, 301 (2005) CrossRef
Kamal, M., Gouda, E.S., J Mater Sci.: Mater. Electron. 19, 81 (2008)
Gouda, E.S., Eur. Phys. J. Appl. Phys. 48, 20902 (2009) CrossRef
Kamal, M., Gouda, E.S., Marei, L.K., Cryst. Res. Technol. 44, 1308 (2009) CrossRef
Yu, S.P., Lin, H.J., Hon, M.H., Wang, M.C., J. Mater. Sci. Mater. Electron. 11, 461 (2000) CrossRef
Chonan, Y., Komiyama, T., Onuki, J., Urao, R., Kimura, T., Nagano, T., Mater. Trans. 43, 1887 (2002) CrossRef
Kamal, M., Gouda, E.S., Cryst. Res. Technol. 41, 1210 (2006) CrossRef
Islam, R.A., Wu, B.Y., Alam, M.O., Chan, Y.C., Jillek, W., J. Alloys Compd. 392, 149 (2005) CrossRef
Mahmudi, R., Geranmayeh, A.R., Khanbareh, H., Jahangiri, N., Mater. Des. 30, 574 (2009) CrossRef
Wang, S.H., Chin, T.S., Yang, C.F., Chen, S.W., Chuang, C.T., J. Alloys Compd. 497, 428 (2010) CrossRef
El-Ashram, T., Shalaby, R., Electron. Mater. 34, 212 (2005) CrossRef
Hammam, M., Saad Al, F.lah, E.S. Gouda, Y. El Gendy, H. Abdel Aziz, Eng. J. 2, 172 (2010)
Wu, T.F., Cheng, T.P., Tsai, W.T., J. Nucl. Mater. 295, 233 (2001) CrossRef