Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T06:58:02.821Z Has data issue: false hasContentIssue false

Functional capacities of gill mitochondria in oyster Crassostrea gigas during an emersion/immersion tidal cycle

Published online by Cambridge University Press:  07 June 2013

Tony Dudognon
Affiliation:
Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
Philippe Soudant
Affiliation:
Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
Catherine Seguineau
Affiliation:
Laboratoire de Physiologie des Invertébrés, IFREMER, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
Claudie Quéré
Affiliation:
Laboratoire de Physiologie des Invertébrés, IFREMER, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
Michel Auffret
Affiliation:
Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
Edouard Kraffe*
Affiliation:
Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, 29280 Plouzané, France
*
a Corresponding author: Edouard.Kraffe@univ-brest.fr
Get access

Abstract

Sessile animals that live on the foreshore undergo tidal cycles, and have to face variations in physical and chemical parameters such as oxygen concentration. During emersion, availability of dissolved oxygen can be lowered for bivalves, which have only a small reserve of seawater inside their closed shell. Differences in oxygen concentration are thus expected to lead to modifications of the metabolism, including changes in mitochondrial activity. Previous studies investigated air exposure under extreme conditions, which do not always reflect environmental conditions these invertebrates have to cope with. In this study, oxidative capacities of gill mitochondria of the oyster Crassostrea gigas were studied during a tidal cycle period, by comparing oysters collected after emersion and immersion. Only minor differences were found in state 3 (oxidative phosphorylation) or state 4 (non-phosphorylating oxygen consumption) rates between the two conditions. Similarly, no difference was observed in cytochrome c oxidase activity or in oxygen consumption related to maximal electron flux through complexes I-IV, II-IV and IV. While capacities of substrate oxidation were maintained in both emersion and immersion conditions, capacity of mitochondria to produce adenosine triphosphate (ATP) was significantly lower in oysters sampled during emersion. These results suggest that although C. gigas could maintain aerobic metabolism during emersion period within a tidal cycle in its environment, energy producing mechanisms are affected.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S.M., Burnett, L.E., 2008, The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the pacific oyster, Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol. 357, 165171. CrossRefGoogle Scholar
Almeida, E.A., Bainy, A.C.D., Dafre, A.L., Gomes, O.F., Medeiros, M.H.G., Di Mascio, P., 2005, Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. J. Exp. Mar. Biol. Ecol. 318, 2130. CrossRefGoogle Scholar
Blier, P.U., Lemieux, H., 2001, The impact of the thermal sensitivity of cytochrome c oxidase on the respiration rate of Arctic charr red muscle mitochondria. J. Comp. Physiol. B 171, 247253. CrossRefGoogle Scholar
Bouchard, P., Guderley, H., 2003, Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 206, 3455-3465. CrossRefGoogle ScholarPubMed
Burcham, J.M., Paynter, K.T., Bishop, S., 1983, Coupled mitochondria from oyster gill tissue. Mar. Biol. Lett. 4, 349-356. Google Scholar
Coleman, N., 1973, The oxygen consumption of Mytilus edulis in air. Comp. Biochem. Physiol. A 45, 393402. CrossRefGoogle Scholar
Estabrook R.W., 1967, Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Estabrook R.W., Pullman M.E. (Eds) Oxidation and phosphorylation, New York, Academic Press, pp. 41–47.
Grieshaber, M., Hardewig, I., Kreutzer, U., Pörtner, H.O., 1994, Physiological and metabolic responses to hypoxia in invertebrates. Rev. Physiol. Biochem. Pharmacol. 125, 43147. CrossRefGoogle Scholar
Hinkle, P.C., Kumar, M.A., Resetar, A., Harris, D.L., 1991, Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30, 35763582. CrossRefGoogle ScholarPubMed
Huang, S.C., Newell, R.I.E., 2002, Seasonal variations in the rates of aquatic and aerial respiration and ammonium excretion of the ribbed mussel, Geukensia demissa (Dillwyn). J. Exp. Mar. Biol. Ecol. 270, 241255. CrossRefGoogle Scholar
Ivanina, A.V., Eilers, S., Kurochkin, I.O., Chung, J.S., Techa, S., Piontkivska, H., Sokolov, E.P., Sokolova, I.M., 2010a, Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica. J. Exp. Biol. 213, 433444. CrossRefGoogle ScholarPubMed
Ivanina, A.V., Kurochkin, I.O., Leamy, L., Sokolova, I.M., 2012, Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 31423154. CrossRefGoogle ScholarPubMed
Ivanina, A.V., Sokolov, E.P., Sokolova, I.M., 2010b, Effects of cadmium on anaerobic energy metabolism and mRNA expression during air exposure and recovery of an intertidal mollusk Crassostrea virginica. Aquat. Toxicol. 99, 330342. CrossRefGoogle ScholarPubMed
Kraffe, E., Tremblay, R., Belvin, S., LeCoz, J.R., Marty, Y., Guderley, H., 2008, Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 156, 2538. CrossRefGoogle Scholar
Kurochkin, I.O., Ivanina, A.V., Eilers, S., Downs, C.A., May, L.A., Sokolova, I.M., 2009, Cadmium affects metabolic responses to prolonged anoxia and reoxygenation in eastern oysters (Crassostrea virginica). Am. J. Physiol. Regul. Integrat. Comp. I 297, 12621272. CrossRefGoogle Scholar
Le Moullac, G., Bacca, H., Huvet, A., Moal, J., Pouvreau, S., Van Wormhoudt, A., 2007, Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia. J. Exp. Zool. A 307, 371382. CrossRefGoogle ScholarPubMed
Lent, C.M., 1968, Air-gaping by the ribbed mussel, Modiolus demissus (Dillwyn): effects and adaptive significance. Biol. Bull. 134, 6073. CrossRefGoogle Scholar
Malis, C.D., Bonventre, J.V., 1986, Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J. Biol. Chem. 261, 1420114208. Google ScholarPubMed
Martin, N., Bureau, D.P., Marty, Y., Kraffe, E., Guderley, H., 2012, Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J. Comp. Physiol. B 183, 393-408. CrossRefGoogle ScholarPubMed
Michaelidis, B., Haas, D., Grieshaber, M.K., 2005, Extracellular and intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol. Biochem. Zool. 78, 373383. CrossRefGoogle Scholar
Mingoa-licuanan S.S., 1993, Oxygen consumption and ammonia excretion in juvenile Tridacna gigas (Linne, 1758): effects of emersion. J. Exp. Mar. Biol. Ecol. 171, 119–137.
Moal, J., Samain, J.F., Le Coz, J.R., Daniel, J.Y., 1989, Responses and adaptations of the adenylate energy charge and digestive enzyme activities to tidal emersion of Crassostrea gigas populations in Marennes-Oléron Bay. Sci. Mar. 53, 699704. Google Scholar
Muleme, H.M., Walpole, A.C., Staples, J.F., 2006, Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol. Biochem. Zool. 79, 474483. CrossRefGoogle ScholarPubMed
Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., Pagliarani, A., 2012, Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie 94, 727733. CrossRefGoogle ScholarPubMed
Newell R.C., 1979, Biology of intertidal animals. 3rd edn., Faversham, Marine Ecological Surveys.
Nicchitta, C.V., Ellington, W.R., 1983, Energy metabolism during air exposure and recovery in the high intertidal bivalve mollusc Geukensia demissa granosissima and the subtidal bivalve mollusc Modiolus squamosus. Biol. Bull. 165, 708722. CrossRefGoogle Scholar
Oellermann, M., Pörtner, H.O., Mark, F.C., 2012, Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J. Exp. Biol. 215, 29923000. CrossRefGoogle ScholarPubMed
Pampanin, D.M., Ballarin, L., Carotenuto, L., Marin, M.G., 2002, Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comp. Biochem. Physiol. A 131, 605614. CrossRefGoogle Scholar
Pichaud, N., Rioux, P., Blier, P.U., 2012, In situ quantification of mitochondrial respiration in permeabilized fibers of a marine invertebrate with low aerobic capacity. Comp. Biochem. Physiol. A 161, 429435. CrossRefGoogle Scholar
Piontkivska, H., Chung, J.S., Ivanina, A.V., Sokolov, E.P., Techa, S., Sokolova, I.M., 2011, Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD). Comp. Biochem. Physiol. D 6, 103114. Google Scholar
Rafrafi, S., Uglow, R.F., 2009, Nitrogenous compounds changes in emersed oysters: Crassostrea gigas. Estuar. Coast. Shelf. Sci. 81, 210214. CrossRefGoogle Scholar
Roberts, J., Aubert, S., Gout, E., Bligny, R., Douce, R., 1997, Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance. Plant. Physiol. 113, 191199. CrossRefGoogle ScholarPubMed
Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J.M., Munnich, A., 1994, Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 3551. CrossRefGoogle ScholarPubMed
Shick, J.M., Widdows, J., Gnaiger, E., 1988, Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Am. Zool. 28, 161181. CrossRefGoogle Scholar
Sokolova, I.M., Ringwood, A.H., Johnson, C., 2005, Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Aquat. Toxicol. 74, 218228. CrossRefGoogle Scholar
Sukhotin, A.A., Pörtner, H.O., 1999, Habitat as a factor involved in the physiological response to environmental anaerobiosis of White Sea Mytilus edulis. Mar. Ecol. Prog. Ser. 184, 149160. CrossRefGoogle Scholar
Sussarellu, R., Dudognon, T., Fabioux, C., Soudant, P., Moraga, D., Kraffe, E., 2013, Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster Crassostrea gigas. J. Exp. Biol. 216, 1561-1569. CrossRefGoogle Scholar
Widdows, J., Bayne, B.L., Livingstone, D.R., Newell, R.I.E., Donkin, P., 1979, Physiological and biochemical responses of bivalve molluscs to exposure to air. Comp. Biochem. Physiol. A 62, 301308. CrossRefGoogle Scholar
Wijsman, T.C.M., 1976, Adenosine phosphates and energy charge in different tissues Mytilus edulis L. under aerobic and anaerobic conditions. J. Comp. Physiol. B 107, 129140. CrossRefGoogle Scholar
Zhang, Z., Li, X., Vandepeer, M., Zhao, W., 2006, Effects of water temperature and air exposure on the lysosomal membrane stability of hemocytes in Pacific oysters, Crassostrea gigas (Thunberg). Aquaculture 256, 502509. CrossRefGoogle Scholar
Zheng, J., Ramirez, V.D., 1999, Rapid inhibition of rat brain mitochondrial proton FoF1-ATPase activity by estrogens: comparison with Na+, K+-ATPase of porcine cortex. Eur. J. Pharmacol. 368, 95102. CrossRefGoogle Scholar