Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T07:43:39.769Z Has data issue: false hasContentIssue false

Initial development of Prochilodus hartii (Pisces: Prochilodontidae) submitted to induced reproduction

Published online by Cambridge University Press:  22 July 2015

Tiago Figueiredo Abdo
Affiliation:
Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500 - Coração Eucarístico. CEP 30535–901. Belo Horizonte, Minas Gerais, Brasil.
Paulo Brant Perrotti
Affiliation:
Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500 - Coração Eucarístico. CEP 30535–901. Belo Horizonte, Minas Gerais, Brasil.
Wesley Antunes Meireles
Affiliation:
Estação de Piscicultura de Machado Mineiro, Companhia energética de Minas Gerais (CEMIG).CEP 39990–976. Águas Vermelhas, Minas Gerais, Brasil.
Nilo Bazzoli*
Affiliation:
Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500 - Coração Eucarístico, CEP 30535–901 Belo Horizonte, Minas Gerais, Brasil.
*
All correspondence to: Nilo Bazzoli. Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500 - Coração Eucarístico, CEP 30535–901 Belo Horizonte, Minas Gerais, Brasil. Tel: +55 31 33194936. Fax: +55 31 33194269. e-mail: bazzoli@pucminas.br.

Summary

The Prochilodontidae prepare for reproduction in captivity, but neither ovulation nor spawning occurs, thus requiring induced reproduction for breeding and restocking. This study analyzed for the first time the embryogenesis and larval ontogeny of P. hartii submitted to induced reproduction by hypophysation with crude common carp pituitary extract. The extrusion of oocytes and sperm was performed manually and fertilization was done using the dry method. After fertilization, the eggs were kept in incubators at 23°C. A stereomicroscope was used to measure egg diameter and to monitor embryo development. Samples of larvae were collected daily for 7 days for histological and biometric analyses. The recently extruded oocytes, non-hydrated, are spherical, grey, and non-adhesive with a diameter of 1480 ± 39 μm and after hydration, have a diameter of 2860 ± 120 μm. The positive response to hypophysation was 100% for females and 80% for males. Spawning occurred 7 h after the third hormonal dosage. The fertilization rate was 77% at 23°C. Blastopore closure occurred at 6 h 45 min and embryonic development was completed 36 h 10 min after fertilization. After 204 h post fertilization (hpf) the larvae reached a standard length of 6.56 ± 0.14 mm with the yolk sac completely resorbed. In P. hartii, the oral cavity opening occurred 132 hpf. The results of this study provide knowledge to better understand induced reproduction, breeding, and management of P. hartii, a species with a high potential for pisciculture, and which is commercially important in the Jequitinhonha River basin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001). Embryonic and larval development of the ‘piabanha’, Brycon insignis, Steindachner, 1876 (Pisces, Characidae). Bol. Inst. Pesca 27, 21–8.Google Scholar
Amorim, M.P., Gomes, B.V.C., Gomes, Y.S., Sato, M.M.P., Gomes, B.V.C., Martins, Y.S., Sato, Y., Rizzo, E. & Bazzoli, N. (2009). Early development of the silver catfish Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Heptapteridae) from the Saõ Francisco River Basin, Brazil. Aquacult. Res. 40, 172–80.Google Scholar
Arantes, F.P., Santos, H.B., Rizzo, E., Sato, Y. & Bazzoli, N. (2011). Influence of water temperature on induced reproduction by hypophysation, sex steroids concentrations and final oocyte maturation of the ‘curimatã-pacu’ Prochilodus argenteus (Pisces: Prochilodontidae). Gen. Comp. Endocrinol. 172, 400–8.Google Scholar
Arantes, F.P., Sato, Y., Sampaio, E.V., Rizzo, E. & Bazzoli, N. (2013). Spawning induction and fecundity of commercial native fish species from the São Francisco River basin, Brazil, under hatchery conditions. Agricult. Sci. 8, 382–8.Google Scholar
Baras, E., Ndao, M., Maxi, M.Y.J., Jeandrain, D., Thome, J.P., Vandewalle, P. & Melard, C. (2000). Sibling cannibalism in dorada under experimental conditions. I. Ontogeny, dynamics, bioenergetics of cannibalism and prey size selectivity. J. Fish Biol. 57, 1001–20.Google Scholar
Borçato, F.L., Bazzoli, N. & Sato, Y. (2004). Embryogenesis and ontogeny of the ‘piau–gordura, Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev. Bras. Zool. 21, 117–22.Google Scholar
Castro, R.M.C. & Vari, R.P. Family Prochilodontidae. (2003). In Checklist of the Freshwater Fishes of South and Central America (eds Reis, R.E., Kullander, S.O. & Ferraris, C.J. Jr) pp. 66–8. Porto Alegre: EDIPUCRS.Google Scholar
Crim, L.W. & Bettles, S. (1997). Use of GnRHa analogues in fish culture. Recent Advances in Marine Biotechnology, Endocrinology and Reproduction (eds Fingerman, M., Nagabhushanam, R. & Thompson, M.F.), pp. 369–82. New Delhi: Oxford and IBH Publishing Co.Google Scholar
Flecker, A.S. (1996). Ecosystem engineering by a dominant detritovore in a diverse tropical stream. Ecology 77, 1845–54.Google Scholar
Godinho, A.L. & Kynard, B. (2006). Migration and spawning of radiotagged zulega Prochilodus argenteus in a dammed Brazilian river. Trans. Am. Fish. Soc. 135, 811–24.Google Scholar
Godinho, H.P., Santos, J.E. & Sato, Y. (2003). Ontogênese larval de cinco espécies de peixes do São Francisco. In Águas, peixes e pescadores do São Francisco das Minas Gerais (eds. Godinho, H.P. & Godinho, A.L.), pp. 133148. Belo Horizonte, Editora PUC Minas.Google Scholar
Godinho, A.L., Lamas, I.R. & Godinho, H.P. (2010). Reproductive ecology of Brazilian freshwater fishes. Environ. Biol. Fish. 87, 143–62.Google Scholar
Gomes, B.V.C., Scarpelli, R.S., Arantes, F.P., Sato, Y., Bazzoli, N. & Rizzo, E. (2007). Comparative oocyte morphology and early development in three species of trahiras from the São Francisco River basin, Brazil. J. Fish Biol. 70, 1412–29.CrossRefGoogle Scholar
Gomes, R.Z., Sato, Y., Rizzo, E. & Bazzoli, N. (2013). Early development of Brycon orthotaenia (Pisces: Characidae). Zygote 21, 1120.Google Scholar
Guimarães-Cruz, R.J., Santos, J.E., Sato, Y. & Veloso-Júnior, V.C. (2009). Early development stages of the catfish Lophiosilurus alexandri Steindachner, 1877 (Pisces: Pseudopimelodidae) from the São Francisco River basin, Brazil. J. Appl. Ichthyol. 25, 321–7.CrossRefGoogle Scholar
Kolm, N. & Ahnesjö, I. (2005). Do egg size and parental care coevolve in fishes? J. Fish Biol. 66, 1499–515.CrossRefGoogle Scholar
Langeland, J.A. & Kimmel, C.B. (1997). Fishes. In Constructing the Organism (eds Gilbert, S.F. & Ramio, A.M.), pp. 383407. Sunderland: Sinauer.Google Scholar
Lubzens, E., Young, G., Bobe, J. & Cerdà, J. (2010). Oogenesis in teleosts: how fish eggs are formed. Gen. Comp. Endocrinol. 165, 367–89.Google Scholar
Marques, C., Nakaghi, L.S.O., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2008). Observations of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.Google Scholar
Mylonas, C.C. & Zohar, Y. (2001). Use of GnRHa-delivery systems for the control of reproduction in fish. Rev. Fish Biol. Fish 10, 463–91.Google Scholar
Mylonas, C.C., Fostier, A. & Zanuy, S. (2010). Broodstock management and hormonal manipulations of fish reproduction. Gen. Comp. Endocrinol. 165, 516–34.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & De Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae). Zygote 14, 217–29.Google Scholar
Ninhaus-Silveira, A., Foresti, F., De Azevedo, A., Agostinho, C.A. & Veríssimo-Silveira, R. (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae). Zygote 15, 267–71.Google Scholar
Oka, S.I. & Higashiji, T. (2012). Early ontogeny of the big roughy Gephyroberyx japonicus (Beryciformes: Trachichthyidae) in captivity. Ichthyol. Res. 59, 282–5.Google Scholar
Osse, J.W.M., Van Den Boogaart, J.G.M., Van Snik, G.M.J. & Vander Sluys, L. (1997). Priorities during early growth of fish larvae. Aquaculture 155, 249–58.Google Scholar
Perini, V.R., Sato, Y., Rizzo, E. & Bazzoli, N. (2010). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes). Zygote 18, 159–71.Google Scholar
Perini, V.R., Sato, Y., Rizzo, E. & Bazzoli, N. (2013). Comparative analyses of the oocytes and early development of two species of Curimatidae teleost fish. Anat. Histol. Embryol. 40, 40–7.Google Scholar
Reynalte-Tataje, D.A., Lopes, C.A., Ávila-Simas, S., Garcia, J.R.E. & Zaniboni-Filho, E. (2013). Artificial reproduction of neotropical fish: extrusion or natural spawning? Nat. Sci. 5, 16.Google Scholar
Sanches, P.V., Nakatani, K. & Bialetzki, A., (1999). Morphological description of the developmental stages of Parauchenipterus galeatus (Linnaeus, 1766) (Siluriformes, Auchenipteridae) on the floodplain of the upper Paraná river. Rev. Bras. Biol. 59, 429–38.CrossRefGoogle Scholar
Sato, Y., Cardoso, E.L., Godinho, A.L. & Godinho, H.P. (1996). Hypophysation of the fish Prochilodus affinis from the Rio São Francisco basin, Brazil. Arq. Bras. Med. Vet. Zootec. 48, 5562.Google Scholar
Sato, Y., Fenerich-Verani, N., Verani, J.R., Vieira, L.J.S. & Godinho, H.P. (2000). Induced reproductive responses of the neotropical anostomids fish Leporinus elongatus Val. under captive breeding. Aquacult. Res. 11, 189–93.Google Scholar
Sato, Y., Fenerich-Verani, N., Nuñer, A.P.O., Godinho, H.P. & Verani, J.R. (2003a). Padrões reprodutivos de peixes da bacia do São Francisco. In: Águas, peixes e pescadores do São Francisco das Minas Gerais (Godinho, H.P. & Godinho, A.L., eds) pp. 229274. Belo Horizonte, CNPq/PADCT, Editora PUC Minas.Google Scholar
Sato, Y., Fenerich-Verani, N. & Godinho, H.P (2003b). Reprodução induzida de peixes da bacia do São Francisco. In Águas, Peixes e Pescadores do São Francisco das Minas Gerais (eds Godinho, H.P. & Godinho, A.L.), pp. 275–89. Belo Horizonte: CNPq/PADCT, Editora PUC Minas.Google Scholar
Sugumar, V. & Munuswamy, N. (2006). Induction of population growth, mictic female production and body size by treatment of a synthetic GnRH analogue in the freshwater rotifer, Brachionus calyciflorus Pallas. Aquaculture 258, 529–34.Google Scholar
Weber, A.A., Sato, Y., Santos, J.E., Rizzo, E. & Bazzoli, N. (2012). Eggs ultrastructure and early development of Franciscodoras marmoratus (Pisces: Doradidae). Anat. Histol. Embryol. 41, 177–83.Google Scholar
Woynarovich, E. & Horváth, L. (1980). The artificial propagation of warm-water finfishes – a manual for extension. FAO Fish. Tech. Pap. 201, 183.Google Scholar
Zaniboni-Filho, E., Reynalte-Tataje, D. & Weingartner, M. (2006). Potencialidad del gênero Brycon en la piscicultura brasileña. Revista Colombiana de Ciencias Pecuarias 19, 233–40.Google Scholar