Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T19:35:46.286Z Has data issue: false hasContentIssue false

Ten good reasons to consider biological processes in prevention and intervention research

Published online by Cambridge University Press:  07 July 2008

Theodore P. Beauchaine*
Affiliation:
University of Washington
Emily Neuhaus
Affiliation:
University of Washington
Sharon L. Brenner
Affiliation:
University of Washington
Lisa Gatzke-Kopp
Affiliation:
University of Washington
*
Address correspondence and reprint requests to: Theodore P. Beauchaine, University of Washington, Box 351525, Seattle, WA 98195-1525; E-mail: tbeaucha@u.washington.edu.

Abstract

Most contemporary accounts of psychopathology acknowledge the importance of both biological and environmental influences on behavior. In developmental psychopathology, multiple etiological mechanisms for psychiatric disturbance are well recognized, including those operating at genetic, neurobiological, and environmental levels of analysis. However, neuroscientific principles are rarely considered in current approaches to prevention or intervention. In this article, we explain why a deeper understanding of the genetic and neural substrates of behavior is essential for the next generation of preventive interventions, and we outline 10 specific reasons why considering biological processes can improve treatment efficacy. Among these, we discuss (a) the role of biomarkers and endophenotypes in identifying those most in need of prevention; (b) implications for treatment of genetic and neural mechanisms of homotypic comorbidity, heterotypic comorbidity, and heterotypic continuity; (c) ways in which biological vulnerabilities moderate the effects of environmental experience; (d) situations in which Biology × Environment interactions account for more variance in key outcomes than main effects; and (e) sensitivity of neural systems, via epigenesis, programming, and neural plasticity, to environmental moderation across the life span. For each of the 10 reasons outlined we present an example from current literature and discuss critical implications for prevention.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work on this article was supported by Grant MH63699 from the National Institute of Mental Health to Theodore P. Beauchaine. We thank Sheila Crowell, Penny Marsh, Hilary Mead, and Katherine Shannon for their helpful contributions.

References

Addis, M. E., Wade, W. A., & Hatgis, C. (1999). Barriers to dissemination of evidence-based practices: Addressing practitioners' concerns about manual-based psychotherapies. Clinical Psychology Science and Practice, 6, 430441.Google Scholar
Agrawal, N., & Hirsch, S. R. (2004). Schizophrenia: Evidence for conceptualising it as a brain disease. Journal of Primary Prevention, 24, 437444.CrossRefGoogle Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions Thousand Oaks, CA: Sage.Google Scholar
Albee, G. W., & Joffe, J. M. (2004). Mental illness is NOT “an illness like any other.” Journal of Primary Prevention, 24, 419436.CrossRefGoogle Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.Google Scholar
Ames, S. L., & McBride, C. (2006). Translating genetics, cognitive science, and other basic science research findings into applications for prevention. Evaluation and the Health Professions, 29, 277301.CrossRefGoogle ScholarPubMed
Andersen, S. L., Leblanc, C. J., & Lyss, P. J. (2001). Maturational increases in c-fos expression in the ascending dopamine systems. Synapse, 41, 345350.Google Scholar
Angold, A., & Costello, E. J. (1993). Depressive comorbidity in children and adolescents: Empirical, theoretical, and methodological issues. American Journal of Psychiatry, 150, 17791791.Google Scholar
Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 5787.Google Scholar
Baker, L. A., Jacobson, K. C., Raine, A., Lozano, D. I., & Bezdjian, S. (2007). Genetic and environmental bases of child antisocial behavior: A multi-informant twin study. Journal of Abnormal Psychology, 116, 219235.Google Scholar
Baron, R. M., & Kenny, D. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 11731182.CrossRefGoogle ScholarPubMed
Baxter, L. R., Schwartz, J. M., Bergman, K. S., Szuba, M. P., Guze, B. H. Mazziotta, J. C., et al. (1992). Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive–compulsive disorder. Archives of General Psychiatry, 49, 690694.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2003). Taxometrics and developmental psychopathology. Development and Psychopathology, 15, 501527.Google Scholar
Beauchaine, T. P., Gartner, J., & Hagen, B. (2000). Comorbid depression and heart rate variability as predictors of aggressive and hyperactive symptom responsiveness during inpatient treatment of conduct-disordered, ADHD boys. Aggressive Behavior, 26, 425441.3.0.CO;2-I>CrossRefGoogle Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Hinshaw, S. P., & Gatzke-Kopp, L. (2008). Genetic and environmental influences on behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child psychopathology: Genetic, neurobiological, and environmental substrates (pp. 5891). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Katkin, E. S., Strassberg, Z., & Snarr, J. (2001). Disinhibitory psychopathology in male adolescents: Discriminating conduct disorder from attention-deficit/hyperactivity disorder through concurrent assessment of multiple autonomic states. Journal of Abnormal Psychology, 110, 610624.Google Scholar
Beauchaine, T. P., Lenzenweger, M. F., & Waller, N. G. (2008). Schizotypy, taxometrics, and disconfirming theories in soft science. Comment on Rawlings, Williams, Haslam, and Claridge. Personality and Individual Differences, 44, 16521662.Google Scholar
Beauchaine, T. P., & Marsh, P. (2006). Taxometric methods: Enhancing early detection and prevention of psychopathology by identifying latent vulnerability traits. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 931967). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., & Mead, H. K. (2006). Some recommendations for testing mediating and moderating effects in treatment-outcome research. International Journal of Psychology Research, 1, 1.Google Scholar
Beauchaine, T. P., & Neuhaus, E. (2008). Behavioral disinhibition and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child psychopathology: Genetic, neurobiological, and environmental substrates (pp. 129156) Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Webster-Stratton, C., & Reid, M. J. (2005). Mediators, moderators, and predictors of one-year outcomes among children treated for early-onset conduct problems: A latent growth curve analysis. Journal of Consulting and Clinical Psychology, 73, 371388.CrossRefGoogle Scholar
Beck, A. T., Rush, A. J., Shaw, B. F., & Emery, G. (1979). Cognitive therapy of depression New York: Guilford Press.Google Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26, 507513.Google Scholar
Blanchard, J. J., Gangestad, S. W., Brown, S. A., & Horan, W. P. (2000). Hedonic capacity and Schizotypy revisited: A taxometric analysis of social anhedonia. Journal of Abnormal Psychology, 109, 8795.CrossRefGoogle ScholarPubMed
Bogdan, R., & Pizzagalli, D. A. (2006). Acute stress reduces reward responsiveness: Implications for depression. Biological Psychiatry, 60, 11471154.CrossRefGoogle ScholarPubMed
Boomsma, D. I., Koopsman, J. R., Van Doornen, L. J., & Orlebeke, J. F. (1994). Genetic and social influences on starting to smoke: A study of Dutch adolescent twins and their parents. Addiction, 89, 219226.CrossRefGoogle Scholar
Boyce, W. T., Essex, M. J., Alkon, A., Goldsmith, H. H., Kraemer, H. C., & Kupfer, D. J. (2006). Early father involvement moderates biobehavioral susceptibility to mental health problems in middle childhood. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 15101520.Google Scholar
Boyle, M. (2004). Preventing a non-existent illness?: Some issues in the prevention of “schizophrenia.” Journal of Primary Prevention, 24, 445469.CrossRefGoogle Scholar
Brady, E. U., & Kendall, P. C. (1992). Comorbidity of anxiety and depression in children and adolescents. Psychological Bulletin, 111, 244255.CrossRefGoogle ScholarPubMed
Brestan, E. V., & Eyberg, S. M. (1998). Effective psychosocial treatments of conduct-disordered children and adolescents: 29 years, 82 studies, and 5,272 kids. Journal of Clinical Child Psychology, 27, 180189.CrossRefGoogle Scholar
Brunelle, C., Assaad, J.-M., Barrett, S. P., Avila, C., Conrod, P. J., Tremblay, R. E., et al. (2004). Heightened heart rate response to alcohol intoxication is associated with reward-seeking personality profile. Alcoholism Clinical and Experimental Research, 28, 394401.Google Scholar
Bryant, R. A. (2006). Longitudinal psychophysiological studies of heart rate: Mediating effects and implications for treatment. Annals of the New York Academy of Sciences, 1071, 1926.CrossRefGoogle ScholarPubMed
Campbell, S. B., Shaw, D. S., & Gilliom, M. (2000). Early externalizing behavior problems: Toddlers and preschoolers at risk for later maladjustment. Development and Psychopathology, 12, 467488.Google Scholar
Capaldi, D. M. (1991). Co-occurrence of conduct problems and depressive symptoms in early adolescent boys: I. Familial factors and general adjustment at Grade 6. Development and Psychopathology, 3, 277300.CrossRefGoogle Scholar
Capaldi, D. M. (1992). Co-occurrence of conduct problems and depressive symptoms in early adolescent boys: II. A 2-year follow up at grade 8. Development and Psychopathology, 4, 125144.Google Scholar
Caspi, A., McClay, J., Moffitt, T., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Castellanos, N., & Conrod, P. (2006). Brief interventions targeting personality risk factors for adolescent substance misuse reduce depression, panic and risk-taking behaviours. Journal of Mental Health, 15, 645658.Google Scholar
Catlow, B. J., & Kirstein, C. L. (2007). Cocaine during adolescence enhances dopamine in response to a natural reinforcer. Neurotoxicology and Teratology, 29, 5765.Google Scholar
Chang, K., Gallelli, K., & Howe, M. (2007). Early identification and prevention of early-onset bipolar disorder. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain (pp. 315346). Oxford: Oxford University Press.Google Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and method (2nd ed., pp. 123). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D. (Ed.). (2007). Gene–environment interaction. Development and Psychopathology, 19, 9571208.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience. Annals of the New York Academy of Sciences, 1094, 248258.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Curtis, W. J. (2006). The developing brain and neural plasticity: Implications for normality, psychopathology, and resilience. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 164). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., & Curtis, W. J. (Eds.). (2007). A multilevel approach to resilience. Development and Psychopathology, 19, 627955.CrossRefGoogle Scholar
Cicchetti, D., & Dawson, G. (Eds.). (2002). Multiple levels of analysis. Development and Psychopathology, 14, 417666.Google Scholar
Cicchetti, D., & Posner, M. I. (2005). Cognitive and affective neuroscience and developmental psychopathology. Development and Psychopathology, 17, 569575.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychpathology. Development and Psychopathology, 8, 597600.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620.Google Scholar
Cloninger, C. R. (1990). Comorbidity of anxiety and depression. Journal of Clinical Psychopharmacology, 10, 43S46S.Google Scholar
Cloninger, C. R., Svrakic, N. M., & Svrakic, D. M. (1997). Role of personality self-organization in development of mental order and disorder. Development and Psychopathology, 9, 881906.Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.Google Scholar
Cohen, P., Chen, H., Crawford, T. N., Brook, J., & Gordon, K. (2007). Personality disorders in early adolescence and the development of later substance use disorders in the general population. Drug and Alcohol Dependence, 88, S71S84.Google Scholar
Conrod, P. J., Peterson, J. B., & Pihl, R. O. (1997). Disinhibited personality and sensitivity to alcohol reinforcement: Independent correlates of drinking behavior in sons of alcoholics. Alcoholism Clinical and Experimental Research, 21, 13201332.CrossRefGoogle ScholarPubMed
Conrod, P. J., Peterson, J. B., Pihl, R. O., & Mankowski, S. (1997). Biphasic effects of alcohol on heart rate are influenced by alcoholic family history and rate of alcohol ingestion. Alcoholism Clinical and Experimental Research, 21, 140149.Google Scholar
Conrod, P. J., Pihl, R. O., Stewart, S. H., & Dongier, M. (2000). Validation of a system of classifying female substance abusers on the basis of personality and motivational risk factors for substance abuse. Psychology of Addictive Behaviors, 14, 243256.Google Scholar
Conrod, P. J., Pihl, R. O., & Vassileva, J. (1998). Differential sensitivity to alcohol reinforcement in groups of men at risk for distinct alcoholism subtypes. Alcoholism Clinical and Experimental Research, 22, 585597.CrossRefGoogle ScholarPubMed
Conrod, P. J., & Stewart, S. H. (2005). A critical look at dual-focused cognitive-behavioral treatments for comorbid substance use and psychiatric disorders: Strengths, limitations, and future dirsctions. Journal of Cognitive Psychotherapy, 19, 261284.Google Scholar
Conrod, P. J., Stewart, S. H., Comeau, N., & Maclean, A. M. (2006). Efficacy of cognitive–behavioral interventions targeting personality risk factors for youth alcohol misuse. Journal of Clinical Child and Adolescent Psychology, 35, 550563.Google Scholar
Cornblatt, B. A. (2001). Predictors of schizophrenia and preventive intervention. In Breier, A. & Tran, P. (Eds.), Current issues in the psychopharmacology of schizophrenia (pp. 389406). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Cornblatt, B. A., Lencz, T., & Kane, J. M. (2001). Treating the schizophrenia prodrome: Is it presently ethical? Schizophrenia Research, 51, 3138.CrossRefGoogle ScholarPubMed
Cornblatt, B. A., & Malhotra, A. K. (2001). Impaired attention as an endophenotype for molecular genetics studies of schizophrenia. American Journal of Medical Genetics, 105, 1115.Google Scholar
Cornblatt, B. A., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11, 487508.Google Scholar
Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neuroscience and Biobehavioral Reviews, 28, 317332.CrossRefGoogle ScholarPubMed
Coryell, W., & Turner, R. (1985). Outcome with desipramine therapy in subtypes of nonpsychotic major depression. Journal of Affective Disorders, 9, 149154.CrossRefGoogle ScholarPubMed
Craddock, N., O'Donovan, M. C., & Owen, M. J. (2007). Phenotypic and genetic complexity of psychosis: Invited commentary on schizophrenia: A common disease caused by multiple rare alleles. British Journal of Psychiatry, 190, 200203.Google Scholar
Crowell, S. E., Beauchaine, T. P., & Lenzenweger, M. (2008). The development of borderline personality and self-injurious behavior. In Beauchaine, T. P. & Hinshaw, S. (Eds.), Child psychopathology: Genetic, neurobiological, and environmental substrates (pp. 510541), Hoboken, NJ: Wiley.Google Scholar
Crowell, S., Beauchaine, T. P., McCauley, E., Smith, C., Stevens, A. L., & Sylvers, P. (2005). Psychological, autonomic, and serotonergic correlates of parasuicidal behavior in adolescent girls. Development and Psychopathology, 17, 11051127.Google Scholar
Crowell, S. E., Beauchaine, T. P., McCauley, E., Smith, C. J., Vasilev, C. A., & Stevens, A. L. (2008). Parent–child interactions, peripheral serotonin, and self-inflicted injury in adolescents. Journal of Consulting and Clinical Psychology, 76, 1521.Google Scholar
Davidson, R. J. (2003). Affective neuroscience and psychophysiology: Toward a synthesis. Psychophysiology, 40, 655665.Google Scholar
Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. M. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545574.Google Scholar
Davies, P. T., Sturge-Apple, M. L., Cicchetti, D., & Cummings, E. M. (2007). The role of child adrenocortical functioning in pathways between interparental conflict and child maladjustment. Developmental Psychology, 43, 918930.Google Scholar
Davison, G. C. (1998). Being bolder with the Boulder model: The challenge of education and training in empirically supported treatments. Journal of Consulting and Clinical Psychology, 66, 163167.Google Scholar
Dawes, R. M., & Meehl, P. E. (1966). Mixed group validation: A method for determining the validity of diagnostic signs without using criterion groups. Psychological Bulletin, 66, 6367.Google Scholar
Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775803.CrossRefGoogle ScholarPubMed
Dawson, G., Webb, S., Schellenberg, G., Aylward, E., Richards, T., Dager, S., & Friedman, S., (2002). Defining the phenotype of autism: Genetic, brain, and behavioral perspectives. Development and Psychopathology, 14, 581611.CrossRefGoogle ScholarPubMed
Dawson, G., & Zanolli, K. (2003). Early intervention and brain plasticity in autism. In Bock, G. & Goode, J. (Eds.), Autism: Neural basis and treatment possibilities (Novartis Foundation Symposium 251, pp. 266280). Chichester: Wiley.CrossRefGoogle Scholar
DiClemente, C. C., Carbonari, J. P., Daniels, J. W., Donovan, D., Bellino, L., & Neavins, T. (2001). Self-efficacy as a matching hypothesis. Causal chain analysis. In Longabaugh, R. H. & Wirtz, P. W. (Eds.), Project MATCH: A priori matching hypotheses, results, and mediating mechanisms (NIAAA Project MATCH Monograph Series, No. 8, pp. 239257). Washington, DC: US Government Printing Office.Google Scholar
Dishion, T. J., McCord, J., & Poulin, F. (1999). When interventions harm: Peer groups and problem behavior. American Psychologist, 54, 755764.Google Scholar
Dishion, T. J., & Patterson, G. R. (1992). Age effects in parent training outcome. Behavior Therapy, 23, 719729.Google Scholar
Donaldson, S. K., Klein, D. N., Riso, L. P., & Schwartz, J. E. (1997). Comorbidity between dysthymic and major depressive disorders: A family study analysis. Journal of Affective Disorders, 42, 103111.Google ScholarPubMed
Drabick, D. A. G., Beauchaine, T. P., Gadow, K. D., Carlson, G. A., & Bromet, E. J. (2006). Risk factors for conduct problems and depressive symptoms in a cohort of Ukrainian children. Journal of Clinical Child and Adolescent Psychology, 35, 244252.CrossRefGoogle Scholar
Durston, S. (2003). A review of the biological bases of ADHD: What have we learned from imaging studies? Mental Retardation & Developmental Disabilities Reviews, 9, 184195.Google Scholar
Ellis, A. (1981). Rational–emotive therapy and cognitive behavior therapy: Similarities and differences. Cognitive Therapy and Research, 4, 325340.Google Scholar
El-Sheikh, M. (2005). Does poor vagal tone exacerbate child maladjustment in the context of parental problem drinking? A longitudinal examination. Journal of Abnormal Psychology, 114, 735741.CrossRefGoogle ScholarPubMed
El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children's adjustment and physical health: The moderating role of vagal tone. Child Development, 72, 16171636.Google Scholar
Epstein, J., Hong, P., Kocsis, J. H., Yang, Y., Butler, T., Chusid, J. (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. American Journal of Psychiatry, 163, 17841790.CrossRefGoogle ScholarPubMed
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A-M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 13131317.Google Scholar
Erlenmeyer-Kimling, L., Golden, R. R., & Cornblatt, B. A. (1989). A taxometric analysis of cognitive and neuromotor variables in children at risk for schizophrenia. Journal of Abnormal Psychology, 98, 203208.Google Scholar
Evans, D. L., Foa, E. B., Gur, R. E., Hendin, H., O'Brien, C. P., Seligman, M. E. P., et al. (2005). Treating and preventing adolescent mental health disorders New York: Oxford University Press.Google Scholar
Felmingham, K., Kemp, A., Williams, L., Das, P., Hughes, G., Peduto, A., et al. (2007). Changes in anterior cingulated and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychological Science, 18, 127129.Google Scholar
Ferdinand, R. F., Dieleman, G., Ormel, J., & Verhulst, F. C. (2007). Homotypic versus heterotypic continuity of anxiety symptoms is adolescents: Evidence for distinction between DSM-IV subtypes. Journal of Abnormal Child Psychology, 35, 325333.CrossRefGoogle ScholarPubMed
Fingeret, M. C., Warren, C. S., Cepeda-Benito, A., & Gleaves, D. H. (2006). Eating disorder prevention research: A meta-analysis. Journal of Treatment and Prevention, 14, 191213.Google Scholar
Fishbein, D. (2000). The importance of neurobiological research to the prevention of psychopathology. Prevention Science, 1, 89106.Google Scholar
Fishbein, D., Hyde, C., Coe, B., & Paschall, M. J. (2004). Neurocognitive and physiological prerequisites for prevention of adolescent drug abuse. Journal of Primary Prevention, 24, 471495.Google Scholar
Fisher, P. A., Gunnar, M. R., Chamberlain, P., & Reid, J. B. (2000). Preventive intervention for maltreated preschool children: Impact on children's behavior, neuroendocrine activity, and foster parent functioning. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 13561364.Google Scholar
Forbes, E. E., May, J. C., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., et al. (2006). Reward-related decision-making in pediatric major depressive disorder: An fMRI study. Journal of Child Psychology and Psychiatry, 47, 10311040.Google Scholar
Forbes, E. E., Shaw, D. S., & Dahl, R. E. (2007). Alterations in reward-related decision making in boys with recent and future depression. Biological Psychiatry, 61, 633639.CrossRefGoogle ScholarPubMed
Fowles, D. C., & Dindo, L. (2006). A dual-deficit model of psychopathy. In Patrick, C. J. (Ed.), Handbook of psychopathy (pp. 1434). New York: Guilford Press.Google Scholar
Fox, N. A., Hane, A. A., & Pine, D. S. (2007). Plasticity for affective neurocircuitry: How the environment shapes gene expression. Current Directions in Psychological Science, 16, 15.Google Scholar
Foxcroft, D. R., Ireland, D., Lister-Sharp, D. J., Lowe, G., & Breen, R. (2003). Longer-term primary prevention for alcohol misuse in young people: A systematic review. Addiction, 98, 397411.CrossRefGoogle ScholarPubMed
Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 1060410609.Google Scholar
Fryer, S. L., Crocker, N. A., & Mattson, S. N. (2008). Exposure to teratogenic agents as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child psychopathology: Genetic, neurobiological, and environmental substrates (pp. 180207). Hoboken, NJ: Wiley.Google Scholar
Gatzke-Kopp, L. M., & Beauchaine, T. P. (2007a). Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In Coch, D., Dawson, G., & Fischer, K. (Eds.), Human behavior and the developing brain: Atypical development (pp. 239263). New York: Guilford Press.Google Scholar
Gatzke-Kopp, L. M., & Beauchaine, T. P. (2007b). Direct and passive prenatal nicotine exposure and the development of externalizing psychopathology. Child Psychiatry and Human DevelopmentGoogle Scholar
Gatzke-Kopp, L. M., Beauchaine, T. P., Shannon, K. E., Chipman-Chacon, J., Fleming, A. P., Crowell, S. E., et al. (2007). Neurological correlates of reward responding in adolescents with and without externalizing disorders. Manuscript submitted for publication.Google Scholar
Gatzke-Kopp, L. M., & Shannon, K. E. (2008). Brain injury as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 208233) Hoboken, NJ: Wiley.Google Scholar
Glahn, D. C., Therman, S., Manninen, M., Huttunen, M., Kapiro, J., Lönnqvist, J., et al. (2003). Spatial working memory as an endophenotype for schizophrenia. Biological Psychiatry, 53, 624626.Google Scholar
Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., et al. (2004). Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61, 3441.Google Scholar
Golden, R. R., & Meehl, P. E. (1979). Detection of the schizoid taxon with MMPI indicators. Journal of Abnormal Psychology, 88, 212233.Google Scholar
Goldsmith, H. H., Gottesman, I. I., & Lemery, K. S. (1997). Epigenetic approaches to developmental psychopathology. Development and Psychopathology, 9, 365387.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Gottlieb, G., & Willoughby, M. T. (2006). Probabilistic epigenesis of psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and method (2nd ed., pp. 673700). Hoboken, NJ: Wiley.Google Scholar
Gould, T. D., & Gottesman, I. I. (2006). Psychiatric endophenotypes and the development of valid animal models. Genes Brain and Behavior, 5, 113119.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The Neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system Oxford: Oxford University Press.Google Scholar
Gunnar, M. R., & Fisher, P. A. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.Google Scholar
Halperin, J. M., & Schulz, K. P. (2006). Revisiting the role of the prefrontal cortex in the patho-physiology of attention-deficit/hyperactivity disorder. Psychological Bulletin, 132, 560581.Google Scholar
Hammock, E. A. D., & Levitt, P. (2006). The discipline of neurobehavioral development: The emerging interface of processes that build circuits and skills. Human Development, 49, 294309.Google Scholar
Hartl, D. L., & Jones, E. W. (2002). Essential genetics: A genomics perspective (3rd ed.). Boston: Jones and Bartlett.Google Scholar
Hawes, D. J., & Dadds, M. R. (2005). The treatment of conduct problems in children with callous-unemotional traits. Journal of Consulting and Clinical Psychology, 73, 737741.Google Scholar
Hicks, B. M., Blonigen, D. M., Kramer, M. D., Krueger, R. F., Patrick, C. J., Iacono, W. G., et al. (2007). Gender differences and developmental change in externalizing disorders from late adolescence to early adulthood: A longitudinal twin study. Journal of Abnormal Psychology, 116, 433447.Google Scholar
Hinshaw, S. P. (1987). On the distinction between attention deficits/hyperactivity and conduct problems/aggression in child psychopathology. Psychological Bulletin, 101, 443463.Google Scholar
Hinshaw, S. P., & Lee, S. S. (2003). Conduct and oppositional defiant disorders. In Mash, E. J. & Barkley, R. A. (Eds.), Child psychopathology (2nd ed., pp. 144198). New York: Guilford Press.Google Scholar
Hull, C. L. (1943). Principles of behavior. New York: Appleton–Century–Crofts.Google Scholar
Insel, T. R., & Goodwin, F. K. (1983). The dexamethasone suppression test: Promises and problems of diagnostic laboratory tests in psychiatry. Hospital and Community Psychiatry, 34, 11311138.Google Scholar
Jacobson, K. C., Prescott, C. A., & Kendler, K. S. (2000). Genetic and environmental influences on juvenile antisocial behavior based on two occasions. Psychological Medicine, 30, 13151325.Google Scholar
Jaffee, S. R., Caspi, A., Moffitt, T. E., Dodge, K. A., Rutter, M., Taylor, A., et al. (2005). Nature × nurture: Genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Development and Psychopathology, 17, 6784.Google Scholar
Jensen, P. S., Hinshaw, S. P., Kraemer, H. C., Lenora, N., Newcorn, J. H., Abikoff, H. B., et al. (2001). ADHD comorbidity findings from the MTA study: Comparing comorbid subgroups. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 147158.CrossRefGoogle ScholarPubMed
Jensen, P., Hinshaw, S. P., Swanson, J., Greenhill, L., Conners, C. K., Arnold, L. E., et al. (2001). Findings from the NIMH Multimodal Treatment Study of ADHD (MTA): Implications and applications for primary care providers. Journal of Developmental and Behavioral Pediatrics, 22, 6073.Google Scholar
Joffe, J. M. (2004). Mental disorders: Should our emphasis be on biological or psychosocial factors? An introduction to the special issue. Journal of Primary Prevention, 24, 415418.Google Scholar
Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, 48, 224244.Google Scholar
Kane, V. B., Fu, Y., Matta, S. G., & Sharp, B. M. (2004). Gestational nicotine exposure attenuates nicotine-stimulated dopamine release in the nucleus accumbens shell of adolescent Lewis rats. Journal of Pharmacological and Experimental Therapeutics, 308, 521528.Google Scholar
Katz, L. F., & Gottman, J. M. (1995). Vagal tone protects children from marital conflict. Development and Psychopathology, 7, 8392.CrossRefGoogle Scholar
Katz, L. F., & Gottman, J. M. (1997). Buffering children from marital conflict and dissolution. Journal of Clinical Child Psychology, 26, 157171.Google Scholar
Keedwell, P. A., Andrew, C., Williams, S. C. R., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58, 843853.Google Scholar
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.Google Scholar
Kent, L., Green, E., Hawi, Z., Kirley, A., Dudbridge, F., Lowe, N., et al. (2005). Association of the paternally transmitted copy of common valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Molecular Psychiatry, 10, 939943.Google Scholar
Klein, D. N., Torpey, D. C., Bufferd, S. J., & Dyson, M. W. (2008). Depressive disorders. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 477509). Hoboken, NJ: Wiley.Google Scholar
Klein-Hessling, J., & Lohaus, A. (2002). Benefits and interindividual differences in children's responses to extended and intensified relaxation training. Anxiety Stress and Coping, 15, 275288.Google Scholar
Klinger, L. G., Dawson, G., & Renner, P. (2003). Autistic disorder. In Mash, E. J. & Barkley, R. A. (Eds.), Child psychopathology (2nd ed., pp. 409454). New York: Guilford Press.Google Scholar
Klump, K. L., McGue, M., & Iacono, W. G. (2000). Differential heritability of eating attitudes and behaviors in prepubertal versus pubertal twins. International Journal of Eating Disorders, 33, 287292.Google Scholar
Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge: Cambridge University Press.Google Scholar
Koopsman, J. R., Slutzke, W. S., Heath, A. C., Neale, M. C., & Boomsma, D. I. (1999). The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. Behavior Genetics, 29, 383393.Google Scholar
Koopsman, J. R., van Doornen, L. J., & Boomsma, D. I. (1997). Association between alcohol use and smoking in adolescent and young adult twins: A bivariate genetic analysis. Alcoholism: Clinical and Experimental Research, 21, 537546.Google Scholar
Kopp, L. M., & Beauchaine, T. P. (2007). Patterns of psychopathology in the families of children with conduct problems, depression, and both psychiatric conditions. Journal of Abnormal Child Psychology, 35, 301312.Google Scholar
Korfine, L., & Lenzenweger, M. F. (1995). The taxonicity of schizotypy: A replication. Journal of Abnormal Psychology, 104, 2631.Google Scholar
Kraemer, H. C., Stice, E., Kazdin, A., Offord, D., & Kupfer, D. (2001). How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. American Journal of Psychiatry, 158, 848856.Google Scholar
Kraemer, H. C., Wilson, G. T., Fairburn, C. G., & Agras, W. S. (2002). Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry, 59, 877883.Google Scholar
Kramer, D. A. (2005). Commentary: Gene–environment interplay in the context of genetics, epigenetics, and gene expression. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 1927.Google Scholar
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior, and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.Google Scholar
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111133.Google Scholar
Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
Kumari, V. (2006). Do Psychotherapies produce neurobiological effects? Acta Neuropsychiatrica, 18, 6170.Google Scholar
Kupper, N., Willemsen, G., Posthuma, D., De Boer, D., Boomsma, D. I., & De Geus, E. J. C. (2005). A genetic analysis of ambulatory cardiorespiratory coupling. Psychophysiology, 42, 202212.Google Scholar
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.Google Scholar
Lemery, K. S., & Doelger, L. (2005). Genetic vulnerabilities to the development of psychopathology. In Hankin, B. L. & Abela, J. R. Z. (Eds.), Development of psychopathology: A vulnerability–stress perspective (pp. 161198). Thousand Oaks, CA: Sage.Google Scholar
Lenzenweger, M. F. (1999). Deeper into the schizotypy taxon: On the robust nature of maximum covariance analysis. Journal of Abnormal Psychology, 108, 182187.Google Scholar
Lenzenweger, M. F. (2006). Schizotaxia, schizotypy and schizophrenia: Paul E. Meehl's blueprint for experimental psychopathology and the genetics of schizophrenia. Journal of Abnormal Psychology, 115, 195200.Google Scholar
Lenzenweger, M. F., & Korfine, L. (1992). Confirming the latent structure and base rate of schizotypy: A taxometric analysis. Journal of Abnormal Psychology, 101, 567571.Google Scholar
Lenzenweger, M. F., McLachlan, G., & Rubin, D. B. (2007). Resolving the latent structure of schizophrenia endophenotypes using expectation-maximization-based finite mixture modeling. Journal of Abnormal Psychology, 116, 1629.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Shankman, S. A., Gau, J. M., & Klein, D. N. (2004). The prevalence and co-morbidity of subthreshold psychiatric conditions. Psychological Medicine, 34, 613622.Google Scholar
Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G., & Dagher, A. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting and novelty seeking: A PET/[11C]Raclopride study in healthy men. Neuropsychopharmacology, 27, 10271035.Google Scholar
Lilienfeld, S. O. (2007). Psychological treatments that cause harm. Perspectives on Psychological Science, 2, 5370.Google Scholar
Lilienfeld, S. O., & Marino, L. (1999). Essentialism revisited: Evolutionary theory and the concept of mental disorder. Journal of Abnormal Psychology, 108, 400411.Google Scholar
Linehan, M. M. (1993). Cognitive–behavioral treatment of borderline personality disorder New York: Guilford Press.Google Scholar
Lochman, J. E. (1992). Cognitive–behavioral intervention with aggressive boys: Three-year follow-up and preventive effects. Journal of Consulting and Clinical Psychology, 60, 426432.Google Scholar
Loeber, R., & Hay, D. (1997). Key issues in the development of aggression and violence from childhood to early adulthood. Annual Review of Psychology, 48, 371410.Google Scholar
Loeber, R., & Keenan, K. (1994). Interaction between conduct disorder and its comorbid conditions: Effects of age and gender. Clinical Psychology Review, 14, 497523.Google Scholar
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71, 543562.Google ScholarPubMed
Lykken, D. T. (2006). Psychopathic personality. In Patrick, C. J. (Ed.), Handbook of psychopathy (pp. 313). New York: Guilford Press.Google Scholar
Lynam, D. R. (1996). The early identification of chronic offenders: Who is the fledgling psychopath? Psychological Bulletin, 120, 209234.Google Scholar
Lynam, D. R. (1998). Early identification of the fledgling psychopath: Locating the psychopathic child in the current nomenclature. Journal of Abnormal Psychology, 107, 566575.Google Scholar
Lynam, D. R., Caspi, A., Moffitt, T. E., Wikström, P. H., Loeber, R., & Novak, S. (2000). The interaction between impulsivity and neighborhood context on offending: The effects of impulsivity are stronger in poorer neighborhoods. Journal of Abnormal Psychology, 109, 563574.Google Scholar
Lynam, D. R., Milich, R., Zimmerman, R., Novak, S. P., Logan, T. K., Martin, C., et al. (1999). Project DARE: No effects at 10-year follow-up. Journal of Consulting and Clinical Psychology, 67, 590593.Google Scholar
Lyons, M. J., True, W. R., Eisen, S. A., Goldberg, J., Meyer, J. M., Faraone, S. V., et al. (1995). Effects of genes and environment on antisocial traits. Archives of General Psychiatry, 52, 906915.Google Scholar
MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2001). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 1940.Google Scholar
Masten, A. S. (2007). Competence, resilience, and development in adolescence: Clues for prevention science. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain (pp. 3152). Oxford: Oxford University Press.Google Scholar
Masterman, P. W., & Kelly, A. B. (2003). Reaching adolescents who drink harmfully: Fitting intervention to developmental reality. Journal of Substance Abuse Treatment, 24, 347355.Google Scholar
McClellan, J. M., Susser, E., & King, M-C. (2007). Schizophrenia: A common disease caused by multiple rare alleles. British Journal of Psychiatry, 190, 194199.Google Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S., Cosgrave, E. M., et al. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to firstepisode psychosis in a clinical sample with sub-threshold symptoms. Archives of General Psychiatry, 59, 921928.Google Scholar
McGue, M., Iacono, W. G., Legrand, L. N., & Elkins, I. (2001). Origins and consequences of age at first drink: II. Familial risk and heritability. Alcoholism: Clinical and Experimental Research, 25, 11661173.Google Scholar
Meany, M. J. (2007). Maternal programming of defensive responses through sustained effects on gene expression. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain (pp. 148172). Oxford: Oxford University Press.Google Scholar
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827838.Google Scholar
Miklowitz, D. J. (2007). The role of the family in the course and treatment of bipolar disorder. Current Directions in Psychological Science, 16, 192196.Google Scholar
Moffitt, T., & Caspi, A. (2001). Childhood predictors differentiate life-course persistent and adolescence-limited antisocial pathways among males and females. Development and Psychopathology, 13, 355375.Google Scholar
Moffitt, T., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology: Concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527.Google Scholar
Molina, B. S. G., Flory, K., Hinshaw, S. P., Greiner, A. R., Arnold, L. E., Swanson, J. M., et al. (2007). Delinquent behavior and emerging substance use in the MTA at 36 months: Prevalence, course, and treatment effects. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 10281040.Google Scholar
Monti, P. M., Colby, S., Barnett, N. P., Spirito, A., Rohsenow, D. J., Myers, M., et al. (1999). Brief intervention for harm reduction with alcohol-positive older adolescents in a hospital emergency department. Journal of Consulting and Clinical Psychology, 67, 989994.Google Scholar
MTA Cooperative Group. (1999). A 14-month randomized clinical trial of treatment strategies for attention/deficit hyperactivity disorder. Archives of General Psychiatry, 56, 10731086.Google Scholar
Nadder, T. S., Rutter, M., Silberg, J. L., Maes, H. H., & Leaves, L. J. (2002). Genetic effects on the variation and covariation of attention deficit-hyperactivity disorder (ADHD) and oppositional-defiant disorder/conduct disorder (ODD/CD) symptomatologies across informant and occasion of measurement. Psychological Medicine, 32, 3953.Google Scholar
Nelson, C. A., Bloom, F. E., Cameron, J. L., Amaral, D., Dahl, R. E., & Pine, D. (2002). An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 14, 499520.Google Scholar
Nestler, E. J., & Carlezon, W. A. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59, 11511159.Google Scholar
Nock, M. K. (2003). Progress review of the psychosocial treatment of child conduct problems. Clinical Psychology Science and Practice, 10, 128.Google Scholar
O'Connor, T. G., McGuire, S., Reiss, D., Hetherington, E. M., & Plomin, R. (1998). Co-occurrence of depressive symptoms and antisocial behavior in adolescence: A common genetic liability. Journal of Abnormal Psychology, 107, 2737.Google Scholar
Oliff, H. S., & Gallardo, K. A. (1999). The effects of nicotine on developing catecholamine systems. Frontiers in Bioscience, 4, d833d897.Google Scholar
O'Malley, K. D., & Nanson, J. (2002). Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Canadian Journal of Psychiatry, 47, 349354.Google Scholar
Orr, S. P., Metzger, L. J., Lasko, N. B., Macklin, M. L., Hu, F. B., Shalev, A. Y., & Pitman, R. K. (2003). Physiologic responses to sudden, loud tones in monozygotic twins discordant for combat exposure: Association with posttraumatic stress disorder. Archives of General Psychiatry, 60, 283288.Google Scholar
Paquette, V., Lévesque, J., Mensour, B., Leroux, J-M., Beaudoin, G., Bourgouin, P., et al. (2003). Change the mind and you change the brain: Effects of cognitive–behavioral therapy on the neural correlates of spider phobia. Neuroimage, 18, 401409.Google Scholar
Patterson, G. R., & Capaldi, D. M. (1990). A mediational model for boys' depressed mood. In Rolf, J., Masten, A. S., Cicchetti, D., Nuechterlein, K. H., & Weintraub, S. (Eds.), Risk and protective factors in the development of psychopathology (pp. 141163). New York: Cambridge University Press.Google Scholar
Patterson, G. R., DeBaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial behavior. American Psychologist, 44, 329335.Google Scholar
Patterson, G. R., DeGarmo, D. S., & Knutson, N. M. (2000). Hyperactive and antisocial behaviors: Comorbid or two points in the same process? Development and Psychopathology, 12, 91107.Google Scholar
Perry, B. D. (2008). Child maltreatment: A neurodevelopmental perspective on the role of abuse and neglect in Psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child psychopathology: Genetic, neurobiological, and environmental substrates (pp. 93128). Hoboken, NJ: Wiley.Google Scholar
Petrosino, A., Turpin-Petrosino, C., & Buehler, J. (2003). “Scared Straight” and other juvenile awareness programs for preventing juvenile delinquency. Annals of the American Academy of Political and Social Science, 589, 4162.Google Scholar
Pollak, S. D. (2005). Early adversity and mechanisms of plasticity: Integrating effective neuroscience with developmental approaches to psychopathology. Development and Psychopathology, 17, 735752.Google Scholar
Porges, S. W. (2006). Asserting the role of biobehavioral; sciences in translational research: The behavioral neurobiology revolution. Development and Psychopathology, 18, 923933.Google Scholar
Project MATCH Research Group. (1997). Matching alcoholism treatments to client heterogeneity: Project MATCH posttreatment drinking outcomes. Journal of Studies on Alcohol, 58, 729.Google Scholar
Raine, A., Mellingen, K., Liu, J., Venables, P., & Mednick, S. (2003). Effects of environmental enrichment at ages 3–5 years on schizotypal personality and antisocial behavior at ages 17 and 23 years. American Journal of Psychiatry, 160, 16271635.Google Scholar
Raine, A., Venables, P., Dalais, C., Mellingen, K., Reynolds, C., & Mednick, S. (2001). Early educational and health enrichment at age 3–5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: Evidence from the Mauritius Child Health Project. Psychophysiology, 38, 254266.Google Scholar
Rapoport, J. C., Addington, A. M., & Frangou, S. (2005). The neurodevelopmental model of schizophrenia: Update 2005. Molecular Psychiatry, 10, 434449.Google Scholar
Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain findings. Psychological Bulletin, 133, 833858.Google Scholar
Rhule, D. M. (2005). Take care not to do harm: Harmful interventions for youth problem behavior. Professional Psychology: Research and Practice, 36, 618625.Google Scholar
Rice, F., Harold, G. T., & Thapar, A. (2002). The genetic aetiology of childhood depression: A review. Journal of Child Psychology and Psychiatry, 43, 6579.Google Scholar
Ross, R. G. (2003). Early expression of a pathophysiological feature of schizophrenia: Saccadic intrusions into smooth-pursuit eye movements in school-age children vulnerable to schizophrenia. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 468476.Google Scholar
Rueda, M. R., Rothbart, M. K. Saccomanno, L., & Posner, M. I. (2007). Modifying brain networks underlying self-regulation. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain (pp. 401419). Oxford: Oxford University Press.Google Scholar
Ruma, P. R., Burke, R. V., & Thompson, R. W. (1996). Group parent training: Is it effective for children of all ages? Behavior Therapy, 27, 159169.Google Scholar
Rutter, M. (2002). The interplay of nature, nurture, and developmental influences: The challenge ahead for mental health. Archives of General Psychiatry, 59, 9961000.Google Scholar
Rutter, M. (2005). Environmentally mediated risk for psychopathology: Research strategies and findings. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 318.Google Scholar
Rutter, M. (2007). Gene–environment interdependence. Developmental Science, 10, 1218.Google Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maughan, B., et al. (1997). Integrating nature and nurture: Implications of person-environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9, 335364.Google Scholar
Rutter, M., & Sroufe, L. A. (2000). Developmental psychopathology: Concepts and challenges. Development and Psychopathology, 12, 265296.Google Scholar
Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397468.Google Scholar
Satterfield, J. H., Faller, K. J., Crinella, F. M., Schell, A. M., Swanson, J. M., & Homer, L. D. (2007). A 30-year prospective follow-up study of hyperactive boys with conduct problems: Adult criminality. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 601610.Google Scholar
Schellenberg, G. D., Dawson, G., Sung, Y. J., Estes, A., Munson, J., Rosenthal, E., et al. (2006). Evidence for multiple loci from a genome scan of autism kindreds. Molecular Psychiatry, 11, 10491060.Google Scholar
Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720724.Google Scholar
Schnell, K., & Herpertz, S. C. (2007). Effects of dialectical behavior-therapy on the neural correlates of affective hyperarousal in borderline personality disorder. Journal of Psychiatric Research, 41, 837847.Google Scholar
Scourfield, J., Rice, F., Thapar, A., Harold, G. T., Martin, N., & McGuffin, P. (2003). Depressive symptoms in children and adolescents: Changing aetiological influences with development. Journal of Child Psychology and Psychiatry, 44, 968976.Google Scholar
Seeger, G., Schloss, P., Schmidt, M. H., Rüter-Jungfleisch, A., & Henn, F. A. (2004). Gene–environment interaction in hyperkinetic conduct disorder (HD + CD) as indicated by season of birth variations in dopamine receptor (DRD4) gene polymorphism. Neuroscience Letters, 366, 282286.Google Scholar
Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: A biobehavioral study. Journal of Abnormal Psychology, 116, 95104.Google Scholar
Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19, 701727.Google Scholar
Siegle, G. J., Carter, C. S., & Thase, M. E. (2006). Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163, 735738.Google Scholar
Silberg, J. L., Rutter, M., & Eaves, L. (2001). Genetic and environmental influences on the temporal association between earlier anxiety and later depression in girls. Biological Psychiatry, 49, 10401049.Google Scholar
Silberg, J., Rutter, M., Neale, M., & Eaves, L. (2001). Genetic moderation of environmental risk for depression and anxiety in girls. British Journal of Psychiatry, 179, 116121.Google Scholar
Silvestri, A. J., & Joffe, J. M. (2004). You'd have to be sick not to be crazy. Journal of Primary Prevention, 24, 497511.Google Scholar
Skinner, B. F. (1938). The behavior of organisms: An experimental analysis New York: Appleton–Century.Google Scholar
Slotkin, T. A. (1998). Fetal nicotine or cocaine exposure: Which one is worse? Journal of Pharmacology and Experimental Therapeutics, 285, 931945.Google Scholar
Snyder, J., Schrepferman, L., & St. Peter, C. (1997). Origins of antisocial behavior: Negative reinforcement and affect dysregulation of behavior as socialization mechanisms in family interaction. Behavior Modification, 21, 187215.Google Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human lifespan. Nature Neuroscience, 6, 309315.Google Scholar
Spear, L. (2007). The developing brain and adolescent-typical behavior patterns: An evolutionary approach. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain (pp. 930). Oxford: Oxford University Press.Google Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.Google Scholar
Stein, M. B., Jang, K. L., Taylor, S., Vernon, P. A., & Livesley, W. J. (2002). Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: A twin study. American Journal of Psychiatry, 159, 16751681.Google Scholar
Stewart, S. H., Conrod, P. J., Marlatt, G. A., Comeau, N., Thush, C., & Krank, M. (2005). New developments in prevention and early intervention for alcohol abuse in youths. Alcoholism Clinical and Experimental Research, 29, 278286.Google Scholar
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depress-sive disorder: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.Google Scholar
Thompson, E. A., Eggert, L. L., Randell, B. P., & Pike, K. C. (2001). Evaluation of indicated suicide risk prevention approaches for potential high school dropouts. American Journal of Public Health, 91, 742752.Google Scholar
Thompson, E. A., Horn, M., Herting, J. R., & Eggert, L. A. (1997). Enhancing outcomes in an indicated drug prevention program for high-risk youth. Journal of Drug Education, 27, 1941.Google Scholar
Thorndike, E. L. (1911). Animal intelligence New York: Macmillan.Google Scholar
Tremblay, R. E. (2005). Towards an epigenetic approach to experimental criminology: The 2004 Joan McCord Prize Lecture. Journal of Experimental Criminology, 1, 397415.Google Scholar
Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., et al. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17, 12061212.Google Scholar
Tyrka, A. R., Cannon, T. D., Haslam, N., Mednick, S. A., Schulsinger, F., Schulsinger, H., et al. (1995). The latent structure of schizotypy: I. Premorbid indicators of a taxon in individuals at risk for schizophrenia-spectrum disorders. Journal of Abnormal Psychology, 104, 173183.Google Scholar
Vaidya, C., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America, 95, 1449414499.Google Scholar
Viken, R. J., Kaprio, J., Koskenvuo, M., & Rose, R. J. (1999). Longitudinal analyses of the determinants of drinking and of drinking to intoxication in adolescent twins. Behavior Genetics, 29, 455461.Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Whisman, M. A., & McClelland, G. H. (2005). Designing, testing, and interpreting interactions and moderator effects in family research. Journal of Family Psychology, 19, 111120.Google Scholar
Young, R. M., Lawford, B. R., Nutting, A., & Noble, E. P. (2004). Advances in molecular genetics and the prevention and treatment of substance misuse: Implications of association studies of the A1 allele of the D2 dopamine receptor gene. Addictive Behaviors, 29, 12751294.Google Scholar