Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T05:49:03.328Z Has data issue: false hasContentIssue false

Variations in normal color vision. V. Simulations of adaptation to natural color environments

Published online by Cambridge University Press:  01 January 2009

IGOR JURICEVIC
Affiliation:
Department of Psychology, University of Nevada, Reno, Nevada
MICHAEL A. WEBSTER*
Affiliation:
Department of Psychology, University of Nevada, Reno, Nevada
*
*Address correspondence and reprint requests to: M.A. Webster, Department of Psychology/296, University of Nevada, Reno, Reno NV 89557, mwebster@unr.nevada.edu

Abstract

Modern accounts of color appearance differ in whether they assume that the perceptual primaries (e.g., white and the unique hues of red, green, blue, and yellow) correspond to unique states determined by the spectral sensitivities of the observer or by the spectral statistics of the environment. We examined the interaction between observers and their environments by asking how color perception should vary if appearance depends on fixed responses in a set of color channels, when the sensitivities of these channels are adapted in plausible ways to different environments. Adaptation was modeled as gain changes in the cones and in multiple postreceptoral channels tuned to different directions in color–luminance space. Gains were adjusted so that the average channel responses were equated across two environments or for the same environment during different seasons, based on sets of natural outdoor scenes (Webster et al., 2007). Because of adaptation, even observers with a shared underlying physiology should perceive color in significantly and systematically different ways when they are exposed to and thus adapted by different contexts. These include differences in achromatic settings (owing to variations in the average chromaticity of locations) and differences in perceived hue (because of differences in scene contrasts). Modeling these changes provides a way of simulating how colors might be experienced by individuals in different color environments and provides a measure of how much color appearance might be modulated for a given observer by variations in the environment.

Type
Natural Tasks and Plasticity
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atick, J.J., Li, Z. & Redlich, A.N. (1993). What does post-adaptation color appearance reveal about cortical color representation? Vision Research 33, 123129.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1972). Dark and light adaptation: Psychophysics. In Handbook of Sensory Physiology, Vol. VII/4, ed. Jameson, D. & Hurvich, L.M., pp. 128. New York: Springer-Verlag.Google Scholar
Beer, R.D., Dinca, A. & MacLeod, D.I.A. (2006). Ideal white can be yellowish or bluish, but not reddish or greenish. Journal of Vision 6, 417a.CrossRefGoogle Scholar
Beer, R.D. & MacLeod, D.I.A. (2000). Pre-exposure to contrast selectively compresses the achromatic half-axes of color space. Vision Research 40, 30833088.CrossRefGoogle ScholarPubMed
Beer, R.D., Wortman, J., Horwitz, G. & MacLeod, D. (2005). Compensation of white for macular filtering. Journal of Vision 5, 282a.CrossRefGoogle Scholar
Boynton, R.M. & Olson, C.X. (1990). Salience of chromatic basic color terms confirmed by three measures. Vision Research 30, 13111317.CrossRefGoogle ScholarPubMed
Brainard, D.H. (2003). Color constancy. In The Visual Neurosciences, Vol. 2, ed. Chalupa, L.M. & Werner, J.S., pp. 948961. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Brainard, D.H., Roorda, A., Yamauchi, Y., Calderone, J.B., Metha, A., Neitz, M., Neitz, J., Williams, D.R. & Jacobs, G.H. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America A 17, 607614.CrossRefGoogle ScholarPubMed
Brainard, D.H. & Wandell, B.A. (1992). Asymmetric color matching: How color appearance depends on the illuminant. Journal of the Optical Society of America A 9, 14331448.CrossRefGoogle ScholarPubMed
Brown, R.O. (1994). The world is not grey. Investigative Ophthalmology and Visual Science (Supplement) 35, 2165.Google Scholar
Changizi, M., Zhang, Q. & Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters 167, E117E139.Google Scholar
Cole, G.R., Hine, T. & McIlhagga, W. (1993). Detection mechanisms in L-, M-, and S-cone contrast space. Journal of the Optical Society of America A 10, 3851.CrossRefGoogle Scholar
Davidoff, J., Davies, I. & Roberson, D. (1999). Colour categories in a stone-age tribe. Nature 398, 203204.CrossRefGoogle Scholar
De Valois, R.L. & De Valois, K.K. (1993). A multi-stage color model. Vision Research 33, 10531065.CrossRefGoogle ScholarPubMed
Delahunt, P.B., Webster, M.A., Ma, L. & Werner, J.S. (2004). Long-term renormalization of chromatic mechanisms following cataract surgery. Visual Neuroscience 21, 301307.CrossRefGoogle ScholarPubMed
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.CrossRefGoogle ScholarPubMed
Dominy, N.J. & Lucas, P.W. (2001). Ecological importance of trichromatic vision to primates. Nature 410, 363366.CrossRefGoogle ScholarPubMed
Eisner, A. & Enoch, J. (1982). Some effects of 1 week’s exposure to long-wavelength stimuli. Perception and Psychophysics 31, 169174.CrossRefGoogle ScholarPubMed
Ganz, E. (1979). Whiteness perception: Individual differences and common trends. Applied Optics 18, 29632970.CrossRefGoogle ScholarPubMed
Georgeson, M.A. (1985). The effect of spatial adaptation on perceived contrast. Spatial Vision 1, 103112.CrossRefGoogle ScholarPubMed
Hering, E. (1964). Outlines of a Theory of the Light Sense. Cambridge, MA: Harvard University Press.Google Scholar
Hurvich, L.M. & Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review 64, 384404.CrossRefGoogle Scholar
Kaiser, P. & Boynton, R.M.B. (1996). Human Color Vision. Washington, D.C: Optical Society of America.Google Scholar
Kay, P., Berlin, B., Maffi, L. & Merrifield, W. (1997). Color naming across languages. In Color Categories in Thought and Language, ed. Hardin, C.L. & Maffi, L., pp. 2156. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kay, P. & McDaniel, C.K. (1978). The linguistic significance of the meanings of basic color terms. Language 54, 610646.CrossRefGoogle Scholar
Kay, P. & Regier, T. (2003). Resolving the question of color naming universals. Proceedings of the National Academy of Sciences of the United States of America 100, 90859089.CrossRefGoogle ScholarPubMed
Komarova, N.L. & Jameson, K.A. (2008). Population heterogeneity and color stimulus heterogeneity in agent-based color categorization. Journal of theoretical Biology 253, 680700.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D.R. & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 11231131.CrossRefGoogle ScholarPubMed
Krauskopf, J. & Zaidi, Q. (1986). Induced desensitization. Vision Research 26, 759762.CrossRefGoogle ScholarPubMed
Kuehni, R.G. (2004). Variability in unique hue selection: A surprising phenomenon. Color Research and Application 29, 158162.Google Scholar
Kwon, M., Fang, F., Cheong, A.M.Y., Legge, G. & He, S. (2007). The impact of prolonged contrast reduction on visual contrast coding [Abstract]. Journal of Vision 7, 358a.CrossRefGoogle Scholar
Laughlin, S.B. (1987). Form and function in retinal processing. Trends in Neuroscience 10, 478483.CrossRefGoogle Scholar
Lee, H.-C. (1990). A computational model for opponent color encoding. In Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference, pp. 178181, Rochester, NY.Google Scholar
Lennie, P. (1999). Color coding in the cortex. In Color Vision: From Genes to Perception, ed.Gegenfurtner, K.R. & Sharpe, L.T., pp. 235247. Cambridge, UK: Cambridge University Press.Google Scholar
Lindsey, D. & Brown, A. (2008). Diversity in English color name usage. Journal of Vision 8, 578a.CrossRefGoogle Scholar
Lythgoe, J.N. & Partridge, J.C. (1989). Visual pigments and the acquisition of visual information. Journal of Experimental Biology 146, 120.CrossRefGoogle ScholarPubMed
MacLeod, D.I.A. (1985). Receptoral constraints on colour appearance. In Central and Peripheral Mechanisms of Colour Vision, ed. Ottoson, D. & Zeki, S., pp. 103. London: MacMillan.CrossRefGoogle Scholar
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society America 69, 11831186.CrossRefGoogle ScholarPubMed
MacLeod, D.I.A. & von der Twer, T. (2003). The pleistochrome: Optimal opponent codes for natural colours. In Colour Perception: Mind and the Physical World, ed. Mausfeld, R. & Heyer, D., pp. 155184. Oxford: Oxford University Press.CrossRefGoogle Scholar
McDermott, K., Juricevic, I., Bebis, G. & Webster, M. (2008). Adapting images to observers. In Human Vision and Electronic Imaging XIII, ed. Rogowitz, B. & Pappas, T., Vol. SPIE 6806, pp. OV1OV10.Google Scholar
McDermott, K., Sharma, S. & Webster, M. (2007). Adaptation and contrast constancy in natural images [Abstract]. Journal of Vision 7, 267a.CrossRefGoogle Scholar
Mollon, J. (2006). Monge: The Verriest lecture, Lyon, July 2005. Visual Neuroscience 23, 297309.CrossRefGoogle ScholarPubMed
Mollon, J.D. & Jordan, G. (1997). On the nature of unique hues. In John Dalton’s Colour Vision Legacy, ed. Dickenson, C., Murray, I. & Carden, D., pp. 381392. London: Taylor and Francis.Google Scholar
Nagy, A.L., Eskew, R.T.J. & Boynton, R.M. (1987). Analysis of color-matching ellipses in cone-excitation space. Journal of the Optical Society of America A 4, 756768.CrossRefGoogle ScholarPubMed
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M. & Williams, D.R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35, 783792.CrossRefGoogle ScholarPubMed
Pokorny, J. & Smith, V.C. (1977). Evaluation of single-pigment shift model of anomalous trichromacy. Journal of the Optical Society of America 67, 11961209.CrossRefGoogle ScholarPubMed
Pokorny, J. & Smith, V.C. (1987). L/M cone ratios and the null point of the perceptual red/green opponent system. Die Farbe 34, 5357.Google Scholar
Regan, B.C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P. & Mollon, J.D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356, 229283.CrossRefGoogle ScholarPubMed
Ross, H. (1975). Behavior and Perception in Strange Environments. New York: Basic Books.Google Scholar
Ruderman, D.L. & Bialek, W. (1994). Statistics of natural images: Scaling in the woods. Physical Review Letters 73, 814817.CrossRefGoogle ScholarPubMed
Ruderman, D.L., Cronin, T.W. & Chiao, C.-C. (1998). Statistics of cone responses to natural images: Implications for visual coding. Journal of the Optical Society of America A 15, 20362045.CrossRefGoogle Scholar
Sankeralli, M.J. & Mullen, K.T. (1996). Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms. Journal of the Optical Society of America A 13, 906915.CrossRefGoogle Scholar
Shepard, R.N. (1992). The perceptual organization of colors: An adaptation to regularities of the terrestrial world? In The Adapted Mind, ed. Barkow, J., Cosmides, L. & Tooby, J.Oxford: Oxford University Press.Google Scholar
Simoncelli, E.P. & Olshausen, B.A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience 24, 11931216.CrossRefGoogle ScholarPubMed
Snowden, R.J. & Hammett, S.T. (1992). Subtractive and divisive adaptation in the human visual system. Nature 355, 248250.CrossRefGoogle ScholarPubMed
Switkes, E., Bradley, A. & De Valois, K.K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America A 5, 11491162.CrossRefGoogle ScholarPubMed
Switkes, E. (2008). Contrast salience across three-dimensional chromoluminance space. Vision Research 48, 18121819.CrossRefGoogle ScholarPubMed
von Kries, J. (1970). Chromatic adaptation, in Festschrift der Albrecht-Ludwigs-Universität (Fribourg, 1902). In Sources of Color Science, ed. MacAdam, D.L., pp. 109119. Cambridge, MA: MIT Press.Google Scholar
Webster, M. & Leonard, D. (2008). Adaptation and perceptual norms in color vision. Journal of the Optical Society of America A 25, 27212733.CrossRefGoogle ScholarPubMed
Webster, M., Mizokami, Y. & Webster, S. (2007). Seasonal variations in the color statistics of natural images. Network: Computation in Neural Systems 18, 213233.CrossRefGoogle ScholarPubMed
Webster, M.A. (2003). Pattern selective adaptation in color and form perception. In The Visual Neurosciences, Vol. 2, ed. Chalupa, L.M. & Werner, J.S., pp. 936947. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Webster, M.A. & Kay, P. (2007). Individual and population differences in focal colors. In The Anthropology of Color, ed. MacLaury, R.L., Paramei, G. & Dedrick, D., pp. 2953. Amsterdam, The Netherlands: John Benjamins.CrossRefGoogle Scholar
Webster, M.A., Miyahara, E., Malkoc, G. & Raker, V.E. (2000). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America A 17, 15451555.CrossRefGoogle ScholarPubMed
Webster, M.A. & Mollon, J.D. (1994). The influence of contrast adaptation on color appearance. Vision Research 34, 19932020.CrossRefGoogle ScholarPubMed
Webster, M.A. & Mollon, J.D. (1997). Adaptation and the color statistics of natural images. Vision Research 37, 32833298.CrossRefGoogle ScholarPubMed
Webster, M.A., Webster, S.M., Bharadwadj, S., Verma, R., Jaikumar, J., Madan, G. & Vaithilingam, E. (2002). Variations in normal color vision III. Unique hues in Indian and United States observers. Journal of the Optical Society of America A 19, 19511962.CrossRefGoogle ScholarPubMed
Werner, J.S. & Schefrin, B.E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America A 10, 15091516.CrossRefGoogle ScholarPubMed
Winawer, J., Witthoft, N., Frank, M.C., Wu, L., Wade, A.R. & Borodistsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences of the United States of America 104, 77807785.CrossRefGoogle ScholarPubMed
Yendrikhovskij, S.N. (2001). Computing color categories from statistics of natural images. Journal of Imaging Science and Technology 45, 409417.CrossRefGoogle Scholar