Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T21:46:46.942Z Has data issue: false hasContentIssue false

Two types of cone bipolar cells express voltage-gated Na+ channels in the rat retina

Published online by Cambridge University Press:  01 September 2008

JINJUAN CUI
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
ZHUO-HUA PAN*
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
*
*Address correspondence and reprint requests to: Zhuo-Hua Pan, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201. E-mail: zhpan@med.wayne.edu

Abstract

Two groups of retinal cone bipolar cells (CBCs) in rats were found to express voltage-gated Na+ channels. The axon terminals of the first group stratify in sublamina 2 of the inner plexiform layer (IPL) and partially overlap with the OFF-cholinergic band. This group was identified as type 3 CBCs. The axon terminals of the second group stratify in sublamina 3 of the IPL, slightly distal to the ON-cholinergic band. Cells of this second group resemble type 5 CBCs. In addition, we observed another group of ON-type CBCs with terminal stratification similar to that of the second group. However, this latter group did not show any Na+ current, instead exhibiting a large hyperpolarization-activated cyclic nucleotide-gated cation current, suggesting the existence of two subclasses of physiologically distinct type 5 CBCs. Both groups of Na+-expressing bipolar cells were capable of generating a rapid tetrodotoxin-sensitive action potential as revealed by current injection. Multiple spike-like potentials were also observed in some of these cells. Results of this study provide valuable insights into the function of voltage-gated Na+ channels of retinal bipolar cells in retinal processing.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awatramani, G.B. & Slaughter, M.M. (2000). Origin of transient and sustained responses in ganglion cells of the retina. Journal of Neuroscience 20, 70877095.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: Light microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences 255, 109184.Google Scholar
Boycott, B.B. & Kolb, H. (1973). The connections between the bipolar cells and photoreceptors in the retina of the domestic cat. Journal of Comparative Neurology 148, 91114.CrossRefGoogle ScholarPubMed
Cui, J., Ma, Y.-P., Lipton, S.A. & Pan, Z.-H. (2003). Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. Journal of Physiology (London) 553, 895909.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: A depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Demb, J.B. (2007). Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179186.CrossRefGoogle ScholarPubMed
Euler, T., Detwiler, P.B. & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845852.CrossRefGoogle ScholarPubMed
Euler, T., Schneider, H. & Wässle, H. (1996). Glutamate responses of bipolar cells in a slice preparation of the rat retina. Journal of Neuroscience 16, 29342944.CrossRefGoogle Scholar
Euler, T. & Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. Journal of Comparative Neurology 361, 461478.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591564.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (2002). A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Visual Neuroscience 19, 145162.CrossRefGoogle ScholarPubMed
Fried, S.I., Münch, T.A. & Werblin, F.S. (2002). Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411414.CrossRefGoogle ScholarPubMed
Fried, S.I., Münch, T.A. & Werblin, F.S. (2005). Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46, 117127.CrossRefGoogle ScholarPubMed
Fyk-Kolodziej, B. & Pourcho, R.G. (2007). Differential distribution of hyperpolarization-activated and cyclic nucleotide-gated channels in cone bipolar cells of the rat retina. Journal of Comparative Neurology 501, 891903.CrossRefGoogle ScholarPubMed
Gavrikov, K.E., Dmitriev, A.V., Keyser, K.T. & Mangel, S.C. (2003). Cation-chloride cotransporters mediate neural computation in the retina. Proceedings of the National Academy of Sciences 100, 1604716052.CrossRefGoogle ScholarPubMed
Ghosh, K.K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. (2004). Types of bipolar cells in the mouse retina. Journal of Comparative Neurology 469, 7082.CrossRefGoogle ScholarPubMed
Greferath, U., Grunert, U. & Wässle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. Journal of Comparative Neurology 301, 433442.CrossRefGoogle ScholarPubMed
Hartveit, E. (1997). Membrane currents evoked by ionotropic glutamate receptor agonists in rod bipolar cells in the rat retinal slice preparation. Journal of Neurophysiology 76, 401422.CrossRefGoogle Scholar
Ichinose, T. & Lukasiewicz, P.D. (2007). Ambient light regulates Na+ channel activity to dynamically control retinal signaling. Journal of Neuroscience 27, 47564764.CrossRefGoogle Scholar
Ichinose, T., Shields, C.R. & Lukasiewicz, P.D. (2005). Na+ channels in transient retinal bipolar cells enhance visual responses in ganglion cells. Journal of Neuroscience 25, 18561865.CrossRefGoogle Scholar
Ivanova, E. & Müller, F. (2006). Retinal bipolar cell types differ in their inventory of ion channels. Visual Neuroscience 23, 143154.CrossRefGoogle ScholarPubMed
Kaneko, A. (1970). Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. Journal of Physiology (London) 207, 623633.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Lee, S. & Zhou, Z.J. (2006). The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787799.CrossRefGoogle ScholarPubMed
Ma, Y.-P., Cui, J., Hu, H.-J. & Pan, Z.-H. (2003). Mammalian retinal bipolar cells express inwardly rectifying K+ currents (IKir) with a different distribution than that of Ih. Journal of Neurophysiology 90, 34793489.CrossRefGoogle ScholarPubMed
Mataruga, A., Kremmer, E. & Müller, F. (2007). Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. Journal of Comparative Neurology 502, 11231137.CrossRefGoogle ScholarPubMed
Mojumder, D.K., Frishman, L.J., Otteson, D.C. & Sherry, D.M. (2007). Voltage-gated sodium channel alpha-subunits Na(v)1.1, Na(v)1.2, and Na(v)1.6 in the distal mammalian retina. Molecular Vision 13, 21632182.Google ScholarPubMed
Mojumder, D.K., Sherry, D.M. & Frishman, L.J. (2008). Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Journal of Physiology (London) 586, 25512580.CrossRefGoogle Scholar
Müller, F., Scholten, A., Ivanova, E., Haverkamp, S., Kremmer, E. & Kaupp, U.B. (2003). HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. European Journal of Neuroscience 17, 20842096.CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269271.CrossRefGoogle ScholarPubMed
Pan, Z.-H. & Hu, H.-J. (2000). Voltage-dependent Na+ currents in mammalian retinal cone bipolar cells. Journal of Neurophysiology 84, 25642571.CrossRefGoogle ScholarPubMed
Pang, J.J., Gao, F. & Wu, S.M. (2004). Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. Journal of Physiology (London) 558, 249262.CrossRefGoogle ScholarPubMed
Pignatelli, V. & Strettoi, E. (2004). Bipolar cells of the mouse retina: A gene gun, morphological study. Journal of Comparative Neurology 476, 254266.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1987). A combined Golgi and autoradiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.CrossRefGoogle ScholarPubMed
Protti, D.A., Flores-Herr, N. & Von Gersdorff, H. (2000). Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25, 215227.CrossRefGoogle ScholarPubMed
Roska, B. & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583587.CrossRefGoogle ScholarPubMed
Saszik, S.M. & DeVries, S.H. (2005). A TTX-sensitive Na+-current in one type of On bipolar cell in the ground squirrel retina. Investigative Ophthalmology and Visual Science 46, E-Abstract 1122.Google Scholar
Slaughter, M.M. & Miller, R.F. (1981). 2-Amino-4-phosphonoburyric acid: A new pharmacological tool for retinal research. Science 211, 182185.CrossRefGoogle Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience 5, 747757.CrossRefGoogle ScholarPubMed
Werblin, F.S. (1978). Transmission along and between rods in the tiger salamander retina. Journal of Physiology (London) 280, 449470.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle ScholarPubMed
Wu, S.M., Gao, F. & Maple, B.R. (2000). Functional architecture of synapses in the inner retina: Segregation of visual signals by stratification of bipolar cell axon terminals. Journal of Neuroscience 20, 44624470.CrossRefGoogle ScholarPubMed
Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I. & Nakanishi, S. (2001). A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771780.CrossRefGoogle ScholarPubMed
Yu, F.H. & Catterall, W.A. (2003). Overview of the voltage-gated sodium channel family. Genome Biology 4, 207.CrossRefGoogle ScholarPubMed
Zenisek, D., Henry, D., Studholme, K., Yazulla, S. & Matthews, G. (2001). Voltage-dependent Na+ channels are expressed in nonspiking retinal bipolar neurons. Journal of Neuroscience 21, 45434550.CrossRefGoogle ScholarPubMed
Zenisek, D. & Matthews, G. (1998). Calcium action potentials in retinal bipolar neurons. Visual Neuroscience 15, 6975.CrossRefGoogle ScholarPubMed