Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T22:22:35.048Z Has data issue: false hasContentIssue false

Flashing anomalous color contrast

Published online by Cambridge University Press:  05 April 2005

BAINGIO PINNA
Affiliation:
Universität Freiburg, AG Hirnforschung, Freiburg, Germany Università di Sassari, Facoltà di Lingue e Letterature Straniere, Sassari, Italy
LOTHAR SPILLMANN
Affiliation:
Universität Freiburg, AG Hirnforschung, Freiburg, Germany
JOHN S. WERNER
Affiliation:
Universität Freiburg, AG Hirnforschung, Freiburg, Germany Department of Ophthalmology and Section of Neurobiology, Physiology & Behavior, University of California, Davis, Sacramento

Abstract

A new visual phenomenon that we call flashing anomalous color contrast is described. This phenomenon arises from the interaction between a gray central disk and a chromatic annulus surrounded by black radial lines. In an array of such figures, the central gray disk no longer appears gray, but assumes a color complementary to that of the surrounding annulus. The induced color appears: (1) vivid and saturated; (2) self-luminous, not a surface property; (3) flashing with eye or stimulus movement; (4) floating out of its confines; and (5) stronger in extrafoveal than in foveal vision. The strength of the effect depends on the number, length, width, and luminance contrast of the radial lines. The results suggest that the chromatic ring bounding the inner tips of the black radial lines induces simultaneous color contrast, whereas the radial lines elicit, in conjunction with the gray disk and the ring, the flashing, vividness, and high saturation of the effect. The stimulus properties inducing the illusion suggest that flashing anomalous color contrast may be based on asynchronous interactions among multiple visual pathways.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anstis, S. (2000). Monocular lustre from flicker. Vision Research 40, 25512556.Google Scholar
DeValois, R.L. & Marrocco, R.T. (1973). Single cell analysis of saturation discrimination in the macaque. Vision Research 13, 701711.CrossRefGoogle Scholar
Ehrenstein, W. (1941). Über Abwandlungen der L. Hermannschen Helligkeitserscheinung. Zeitschrift für Psychologie 150, 8391.Google Scholar
Ehrenstein, W. (1954) Probleme der ganzheitspsychologischen Wahrnehmungslehre. Leipzig: Barth.
Frisby, J. & Clatworthy, J.L. (1975). Illusory contours: Curious cases of simultaneous brightness contrast? Perception 4, 349357.Google Scholar
Heggelund, P. (1992). A bidimensional theory of achromatic color vision. Vision Research 32, 21072119.CrossRefGoogle Scholar
Heider, B., Spillmann, L., & Peterhans, E. (2000). Stereoscopic illusory contours—Cortical neuron responses and human perception. Journal of Cognitive Neuroscience 14, 10181029.Google Scholar
Hering, E. (1920). Zur Lehre vom Lichtsinn. Berlin: Springer.CrossRef
Kamitani, Y. & Shimojo, S. (2004). Visual segmentation and illusory contours. In The Visual Neurosciences, ed. Chalupa & L.M., Werner J.S., pp. 11291138. Cambridge, Massachusetts: MIT Press.
Kirschmann, A. (1891) Über die quantitativen Verhältnisse des simultanen Helligkeits- und Farben-Contrastes. Philosophische Studien 6, 417491.Google Scholar
Metzger, W. (1954). Psychologie. Darmstadt: Dietrich Steinkopff.
Michael, C.R. (1978). Color vision mechanisms in monkey striate cortex: Dual opponent cells with concentric receptive fields. Journal of Neurophysiology 41, 572588.Google Scholar
Nakayama, K., Shimojo, S., & Silverman, G.H. (1989). Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18, 5568.Google Scholar
Petry, S., Harbeck, A., Conway, J., & Levey, J. (1983). Stimulus determinants of brightness and distinctness of subjective contours. Perception and Psychophysics 34, 169174.CrossRefGoogle Scholar
Pinna, B., Spillmann, L., & Ehrenstein, W.H. (2000). Scintillating lustre and brightness induced by radial lines. Perception 31, 516.Google Scholar
Pinna, B., Spillmann, L., & Werner, J.S. (2003). Anomalous induction of brightness and surface qualities: A new illusion due to radial lines and chromatic rings. Perception 31, 12891305.Google Scholar
Redies, C., Crook, J., & Creutzfeldt, O. (1986). Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus. Experimental Brain Research 61, 469481.Google Scholar
Spillmann, L. (1975). Perceptual modification of the Ehrenstein illusion. In Gestalttheorie in der modernen Psychologie, ed. Ertel, S., Kemmler, L., & Stadler, M., pp. 210218. Darmstadt: D. Steinkopff.CrossRef
Spillmann, L., Fuld, K., & Gerrits, H.J.M. (1976). Brightness contrast in the Ehrenstein illusion. Vision Research 16, 713719.CrossRefGoogle Scholar
Ts'o, D.Y. & Gilbert, C.D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8, 17121727.Google Scholar
von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science 224, 12601262.CrossRefGoogle Scholar
von Grünau, M.W. (1975). The “Fluttering Heart” and spatio-temporal characteristics of color processing: II. Lateral interaction across the chromatic border. Vision Research 15, 437440.Google Scholar
von Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: G. Voss.