Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T14:41:03.272Z Has data issue: false hasContentIssue false

Three-dimensional arrays of graphenated carbon nanotubes

Published online by Cambridge University Press:  27 March 2012

Charles B. Parker*
Affiliation:
Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708
Akshay S. Raut
Affiliation:
Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708
Billyde Brown
Affiliation:
Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708
Brian R. Stoner
Affiliation:
RTI International, Center for Materials and Electronic Technologies, Durham, North Carolina 27709
Jeffrey T. Glass
Affiliation:
Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708
*
a)Address all correspondence to this author. e-mail: charles.parker@duke.edu
Get access

Abstract

Graphene and carbon nanotubes (CNTs) are fascinating materials, both scientifically and technologically, due to their exceptional properties and potential use in applications ranging from high-frequency electronics to energy storage devices. This manuscript introduces a hybrid structure consisting of graphitic foliates grown along the length of aligned multiwalled CNTs. The foliate density and layer thickness vary as a function of deposition conditions, and a model is proposed for their nucleation and growth. The hybrid structures were studied using electron microscopy and Raman spectroscopy. The foliates consist of edges that approach the dimensions of graphene and provide enhanced charge storage capacity. Electrochemical impedance spectroscopy indicated that the weight-specific capacitance for the graphenated CNTs was 5.4× that of similar CNTs without the graphitic foliates. Pulsed charge injection measurements demonstrated a 7.3× increase in capacitance per unit area. These data suggest that this unique structure integrates the high surface charge density of the graphene edges with the high longitudinal conductivity of the CNTs and may have significant impact in charge storage and related applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hall, H.T.: Ultra-high-pressure, high-temperature apparatus: The “belt”. Rev. Sci. Instrum. 31(2), 125 (1960).Google Scholar
2.Werner, M. and Locher, R.: Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 61(12), 1665 (1998).CrossRefGoogle Scholar
3.Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
4.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
6.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
7.Wu, Y.H., Yu, T., and Shen, Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010).CrossRefGoogle Scholar
8.Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., and Poh, H.L.: Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 29(9), 954 (2010).CrossRefGoogle Scholar
9.Wei, D. and Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).CrossRefGoogle ScholarPubMed
10.Trasobares, S., Ewels, C.P., Birrell, J., Stephan, O., Wei, B.Q., Carlisle, J.A., Miller, D., Keblinski, P., and Ajayan, P.M.: Carbon nanotubes with graphitic wings. Adv. Mater. 16(7), 610613 (2004).CrossRefGoogle Scholar
11.Yu, K., Lu, G., Bo, Z., Mao, S., and Chen, J.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 15561562 (2011).CrossRefGoogle Scholar
12.Stoner, B.R., Raut, A.S., Brown, B., Parker, C.B., and Glass, J.T.: Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl. Phys. Lett. 99(18), 183104 (2011).Google Scholar
13.Randin, J-P. and Yeager, E.: Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 118(5), 711 (1971).Google Scholar
14.Raut, A.S., Parker, C.B., and Glass, J.T.: A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes. J. Mater. Res. 25(8), 1500 (2010).Google Scholar
15.Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275 (2008).Google Scholar
16.Natarajan, S., Gilchrist, K.H., Piascik, J.R., Parker, C.B., Glass, J.T., and Stoner, B.R.: Simulation and testing of a lateral, microfabricated electron-impact ion source. Appl. Phys. Lett. 94(4), 044109 (2009).Google Scholar
17.Kurt, R., Karimi, A., and Hoffmann, V.: Growth of decorated carbon nano-tubes. Chem. Phys. Lett. 335, 545 (2001).CrossRefGoogle Scholar
18.Lourie, O. and Wagner, H.D.: Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59(6), 975 (1999).Google Scholar
19.Kurt, R. and Karimi, A.: Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. ChemPhysChem 2(6), 388 (2001).3.0.CO;2-O>CrossRefGoogle ScholarPubMed
20.Kurt, R., Klinke, C., Bonard, J.M., Kern, K., and Karimi, A.: Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD. Carbon 39, 2163 2001.Google Scholar
21.Mata, D., Ferro, M., Fernandes, A.J.S., Amaral, M., Oliveira, F.J., Costa, P.M.F.J., and Silva, R.F.: Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon 48(10), 2839 (2010).CrossRefGoogle Scholar
22.Cui, H., Zhou, O., and Stoner, B.R.: Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000. 88(10): p. 60726074.Google Scholar
23.Endo, M., Takeuchi, K., Hiraoka, T., Furuta, T., Kasai, T., Sun, X., Kiang, C.H., and Dresselhaus, M.S.: Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58(11), 1707 (1997).CrossRefGoogle Scholar
24.Zhu, M., Wang, J., Holloway, B.C., Outlaw, R.A., Zhao, X., Hou, K., Shutthanandan, V., and Manos, D.M.: A mechanism for carbon nanosheet formation. Carbon, 2007. 45(11), pp. 22292234.Google Scholar
25.Porter, D.A. and Easterling, K.E.: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, New York, 1992).Google Scholar
26.Singh, D.K., Iyer, P.K., and Giri, P.K.: Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by x-ray diffraction and Raman scattering studies. Diamond Relat. Mater. 19, 1281 (2010).Google Scholar
27.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) 187401 (2006).CrossRefGoogle ScholarPubMed
28.Faugeras, C., Nerriere, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C., and de Heer, W.A.: Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 92(1), 011914 (2008).CrossRefGoogle Scholar
29.Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751 (2010).CrossRefGoogle ScholarPubMed
30.Li, X-F., Wang, B-L., and Lee, K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009).CrossRefGoogle Scholar
31.Sun, Y. and Chen, Q.: Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95(2), 021901 (2009).Google Scholar
32.Yu, M-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).Google Scholar
33.Lee, K., Lukic, B., Magrez, A., Seo, J.W., Briggs, G.A.D., Kulik, A.J., and Forro, L.: Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Nano Lett. 7(6), 1598 (2007).CrossRefGoogle ScholarPubMed
34.Poncharal, P., Wang, Z.L., Ugarte, D., and de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).Google Scholar
35.Robertson, D.H., Brenner, D.W., and Mintmire, J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45(21), 1259212595 (1992).Google Scholar
36.Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., and Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10), 626631 (2008).CrossRefGoogle ScholarPubMed
37.Wang, M-S., Golberg, D., and Bando, Y.: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).Google Scholar
38.Nakayama, Y.: Plasticity of carbon nanotubes: Aiming at their use in nanosized devices. Jpn. J. Appl. Phys. 46, 5005 (2007).Google Scholar
39.Wei, C., Cho, K., and Srivastava, D.: Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003).CrossRefGoogle Scholar
40.Thostenson, E.T. and Chou, T-W.: Nanotube buckling in aligned multi-wall carbon nanotube composites. Carbon 42(14), 3015 (2004).Google Scholar
41.Ducati, C., Alexandrou, I., Chhowalla, M., Robertson, J., and Amaratunga, G.A.J.: The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 95(11), 6387 (2004).CrossRefGoogle Scholar
42.Chang, L. and Hui-Ming, C.: Carbon nanotubes for clean energy applications. J. Phys. D: Appl. Phys. 14, R231 (2005).Google Scholar
43.Du, C., Yeh, J., and Pan, N.: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4), 350 (2005).CrossRefGoogle Scholar
44.Obreja, V.V.N.: On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40(7), 2596 (2008).Google Scholar
45.Li, J. and Andrews, R.J.: Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays, in Operative Neuromodulation, edited by Sakas, D.E. and Simpson, B.A. (Springer-Verlag, Austria, 2007), pp. 537545.Google Scholar
46.Minnikanti, S., Skeath, P., and Peixoto, N.: Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47(3), 884 (2009).CrossRefGoogle Scholar
47.Nguyen-Vu, T.D.B., Hua, C., Cassell, A.M., Andrews, R.J., Meyyappan, M., and Jun, L.: Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans.Biomed. Eng. 54(6), 1121 (2007).CrossRefGoogle ScholarPubMed
48.Phely-Bobin, T.S., Tiano, T., Farrell, B., Fooksa, R., Robblee, L., Edell, D.J., and Czerw, R.: Carbon nanotube based electrodes for neuroprosthetic applications, in Electrobiological Interfaces on Soft Substrates, edited by Conde, J.P., Morrison, B., and Lacour, S.P. (Mater. Res. Soc. Symp. Proc. 926E, Warrendale, PA, 2006), 0926-CC04-01.Google Scholar
49.Wang, K., Fishman, H.A., Dai, H., and Harris, J.S.: Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043 (2006).Google Scholar
50.Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., and Ballerini, L.: Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931 (2007).CrossRefGoogle ScholarPubMed
51.Minnikanti, S., Pereira, M.G., Jaraiedi, S., Jackson, K., Costa-Neto, C.M., Li, Q., and Peixoto, N.: In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J. Neural Eng. 7(1), 16002 (2010).Google Scholar
52.Yeh, S.R., Chen, Y.C., Su, H.C., Yew, T.R., Kao, H.H., Lee, Y.T., Liu, T.A., Chen, H., Chang, Y.C., and Chang, P.: Interfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance. Langmuir 25(13), 7718 (2009).Google Scholar