Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T10:13:51.278Z Has data issue: false hasContentIssue false

Thermodynamics and phase stability in the In–N system

Published online by Cambridge University Press:  31 January 2011

B. Onderka
Affiliation:
Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany
R. Schmid-Fetzer*
Affiliation:
Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany
*
a)Address all correspondence to this author.schmid-fetzer@tu-clausthal.de
Get access

Abstract

Results of a chemical vapor deposition crystal growth method intended to produce large amounts of InN needed for thermodynamic experiments are reported. Polycrystalline films of InN were grown by reaction of InCl3 and NH3 in a hot-wall silica reactor under nearly atmospheric pressure. Samples were analyzed using x-ray diffraction and chemical analysis. The decomposition of InN was studied in both thin film and powder form. InN films were investigated by isothermal heating under nitrogen and subsequent microscopic inspection. The removal of the nucleation barrier of forming the first liquid phase was emphasized. InN powder decomposition experiments involved two different customized thermogravimetric methods: (i) dynamic oscillation thermogravimetric analysis (TGA), and (ii) isothermal stepping TGA for a higher resolution of the decomposition start. The decomposition start was found consistently at (773 ±5) K under 1 bar of nitrogen. Nevertheless, it is suggested that InN may be metastable even below room temperature based on Computer Coupling of Phase Diagrams and Thermo chemistry-type thermodynamic analysis of all available phase equilibrium and thermodynamic data. This included the determination of the absolute entropy of InN, 31.6 ±3 J/mol-formula K, based on a Debye and Einstein analysis of the experimental data on the heat capacity. All calculations of pressure are corrected for the fugacity of nitrogen, which becomes crucial above 1000 bar. The contradictory literature data in the In–N system are discussed based on three different internally consistent thermodynamic analyses of the system that highlight the consequences of different choices made on the decomposition temperature of InN. Widely reproduced data in the literature are shown to produce thermodynamically impossible negative absolute entropy of InN. Complete P-T-x phase diagrams are given, which strongly suggest that solid InN is metastable under ambient conditions. To find out that InN crystals could be reproducibly superheated more than 500 K before they actually decompose comes as a surprise compared to other III-V systems, especially Ga–N.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
2.Properties of Group III Nitrides, EMIS Data Review Series No. 11, edited by Edgar, J.H. (Inspec, London, U.K., 1994).Google Scholar
3.Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).CrossRefGoogle Scholar
4.Properties and Applications of Gallium Nitride and Related Semiconductors, EMIS Datareview Series No. 16, edited by Edgar, J.H., Strite, S., Akasaki, I., Amano, H., and Wetzel, C. (Inspec, London, U.K., 1999).Google Scholar
5.Park, Y-S., J. Kor. Phys. Soc. 34, S199 (1999).Google Scholar
6.Jain, S.C., Wilander, M., Narayan, J., and Overstraeten, R. Van, J. Appl. Phys. 87, 965 (2000).CrossRefGoogle Scholar
7.Przhevalskii, I.N., Karpov, S.Yu., and Makarov, Yu.N., MRS Internet J. Nitride Semicond. Res. 30, 1 (1998), http://nsr.mij.mrs.org.Google Scholar
8.MacChesney, J.B., Bridenbaugh, P.M., and O'Connor, P.B., Mater. Res. Bull. 5, 783 (1970).CrossRefGoogle Scholar
9.Grzegory, I., Krukowski, S., Jun, J., Bockowski, M., Wroblewski, M., and Porowski, S., in High-Pressure Science and Technology, edited by Schmidt, S.C., Shaner, J.W., Samara, G.A., and Ross, M., AIP Conf. Proc. 309 (Am. Inst. Physics, New York, 1994), pp. 565568.CrossRefGoogle Scholar
10.Grzegory, I., Ph.D. Thesis, High-Pres. Res. Cent., Polish Academy of Sciences, Warszawa, Poland (1995; in Polish).Google Scholar
11.Trainor, J.W. and Rose, K., J. Electron. Mater. 35, 821 (1974).CrossRefGoogle Scholar
12.Tansley, T.L. and Foley, C.P., J. Appl. Phys. 59, 3241 (1986).CrossRefGoogle Scholar
13.Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol. B 14, 3532 (1996).CrossRefGoogle Scholar
14.Guo, Q., Kato, O., and Yoshida, A., J. Appl. Phys. 73, 7969 (1993).CrossRefGoogle Scholar
15.Grzegory, I., in High-Pressure Science and Technology, edited by Schmidt, S.C., Shaner, J.W., Samara, G.A., and Ross, M., AIP Conf. Proc. 309 (Am. Inst. Physics, New York, 1994), pp. 561564.CrossRefGoogle Scholar
16.Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Palosz, B., Porowski, S., and Zinn, P., J. Phys. Chem. Solids 59, 289 (1998).CrossRefGoogle Scholar
17.Takahashi, N., Matsumoto, R., Koukitu, A., and Seki, H., Jpn. J. Appl. Phys. 36, L743 (1997).CrossRefGoogle Scholar
18.Takahashi, N., Ogasawara, J., and Koukitu, A., J. Cryst. Growth 172, 298 (1997).CrossRefGoogle Scholar
19.Pisch, A. and Schmid-Fetzer, R., J. Cryst. Growth 187, 329 (1998).CrossRefGoogle Scholar
20.Unland, J., Onderka, B., Davydov, A., and Schmid-Fetzer, R. (submitted).Google Scholar
21.Juza, R. and Hahn, H., Z. Anorg. Allgem. Chem. 239, 282 (1938, in German).CrossRefGoogle Scholar
22.Strite, S., Chandrasekhar, D., Smith, D.J., Sariel, J., Chen, H., Teraguchi, N., and Morkoc, H., J. Cryst. Growth 127, 204 (1993).CrossRefGoogle Scholar
23.Xia, Q., Xia, H., and Ruoff, A.L., in High-Pressure Science and Technology, edited by Schmidt, S.C., Shaner, J.W., Samara, G.A., and Ross, M., AIP Conf. Proc. 309, (Am. Inst. Physics, New York, 1994), pp. 307310.Google Scholar
24.Tansley, T.L., in Properties of Group III Nitrides, edited by Edgar, J.H., EMIS Datareview Series No. 11 (Inspec, London, U.K., 1994), pp. 3540.Google Scholar
25.Krukowski, S., Leszczynski, M., and Porowski, S., in Properties, Processing and Applications of Gallium Nitride and Related Semiconductors, edited by Edgar, J.H., Strite, S., Akasaki, I., Amano, H., and Wetzel, C., EMIS Datareview Series No. 16 (Inspec, London, U.K., 1999), pp. 2128.Google Scholar
26.Chase, M.W., Ansara, I., Dinsdale, A., Eriksson, G., Grimvall, G., Höglund, L., and Yokokawa, H., CALPHAD 19, 437 (1995).Google Scholar
27.Marmaluk, A.A., Akchurin, R.Kh., and Gorbylev, V.A., High Temperature 36, 817 (1998).Google Scholar
28.Kubaschewski, O., Alcock, C.B., and Spencer, P.J., Metallurgical Thermochemistry, 6th ed. (Pergamon Press, London, U.K., 1993).Google Scholar
29.Dinsdale, A.T., CALPHAD 15, 317 (1991).CrossRefGoogle Scholar
30.Frisk, K., CALPHAD 15, 79 (1991).CrossRefGoogle Scholar
31.SGTE Substance Database, Royal Institute of Technology, Stockholm, Sweden (1994).Google Scholar
32.Antonovich, A.A., Plotnikov, M.A., and Savel'ev, G.Ya., Zh. Prikl. Mekh. Tekh. Fiz. 10(3), 99 (1969, in Russian).Google Scholar
33.Jacobsen, R.T., Stewart, R.B., and Jahangiri, M., J. Phys. Chem. Ref. Data 15, 735 (1986).CrossRefGoogle Scholar
34.Lemmon, E.W., Jacobsen, R.T., Penoncello, S.G., and Beyerlein, S.W., Computer programs for calculating thermodynamic properties of fluids of engineering interest, version 6/4/1996, Univ. of Idaho Center for Applied Thermodynamic Studios (CATS), Moscow, ID (1996).Google Scholar
35.PANDAT, Software for Multicomponent Phase Diagram Calculation, Computherm LLC, Madison, WI (2001).Google Scholar
36.Chen, S-L., Daniel, S., Zhang, F., Chang, Y.A., Oates, W.A., and Schmid-Fetzer, R., J. Phase Equilibria 22, 373 (2001).CrossRefGoogle Scholar
37.Jones, R.D. and Rose, K., CALPHAD 8, 343 (1984).CrossRefGoogle Scholar
38.Porowski, S. and Grzegory, I., in Properties of Group III Nitrides, edited by Edgar, J.H., EMIS Datareview Series No. 11 (Inspec, London, U.K., 1994), pp. 8285.Google Scholar
39.Vechten, J.A. Van, Phys. Rev. B 7, 1479 (1973).CrossRefGoogle Scholar
40.Ranade, M.R., Tessier, F., Navrotsky, A., and Marchand, R., J. Mater. Res. 16, 2824 (2001).CrossRefGoogle Scholar
41.Hahn, H. and Juza, R., Z. Anorg. Allgem. Chem. 244, 111 (1940, in German).CrossRefGoogle Scholar
42.Vorob'ev, A.M., Evseeva, G.V., and Zenkevich, L.V., Russ. J. Phys. Chem. 45, 1501 (1971).Google Scholar
43.Vorob'ev, A.M., Evseeva, G.V., and Zenkevich, L.V., Russ. J. Phys. Chem. 47, 1616 (1973).Google Scholar
44.Gordienko, S.P. and Fenochka, B.V., Russ. J. Phys. Chem. 51, 315 (1977).Google Scholar
45.Jones, R.D. and Rose, K., J. Phys. Chem. Solids 48, 587 (1987).CrossRefGoogle Scholar
46.Hong, J., Lee, J.W., Vartuli, C.B., Mackenzie, J.D., Donovan, S.M., Abernathy, C.R., Crockett, R.V., Pearton, S.J., Zolper, J.C., and Ren, F., Solid-State Electron. 41, 681 (1997).CrossRefGoogle Scholar
47.Class, W., Contract Rep. 1968, NASA CR-1171 (1968).Google Scholar
48.Kostanovsky, A.V. and Kirillin, A.V., Int. J. Thermophys. 17, 507 (1996).CrossRefGoogle Scholar
49.Mah, A.D., King, E.G., Weller, W.W., and Christensen, A.U., RI 5716, U.S. Bureau of Mines, Berkeley, CA (1961).Google Scholar
50.Koshchenko, V.I., Grinberg, Ya.Kh., and Demidenko, A.F., Neorg. Mater. 20, 1787 (1984, in Russian).Google Scholar
51.Strel'chenko, S.S. and Lebedev, V.V., III-V Compounds Handbook (Metallurgia Moscow, USSR, 1984).Google Scholar
52.Sato, S., Sci. Papers Inst. Phys. Chem. Research (Tokyo) 29, 19 (1932).Google Scholar
53.Neugebauer, C.A. and Margrave, J.L., Z. Anorg. Allgem. Chem. 290, 82 (1957).CrossRefGoogle Scholar
54.Hildebrand, D.L. and Hall, W.F., J. Phys. Chem. 67, 888 (1963).CrossRefGoogle Scholar
55.Era, K., Muki Zaishitsu Kenky-usho kenky-u h-okokusho 4, 59 (1973, in Japanese); Chem. Abstr. 87, 192133m (1977).Google Scholar
56.McHale, J.M., Navrotsky, A., and DiSalvo, F.J., Chem. Mater. 11, 1148 (1999).CrossRefGoogle Scholar
57.Karpinski, J., Jun, J., and Porowski, S., J. Cryst. Growth 66, 1 (1984).CrossRefGoogle Scholar
58.Marina, L.I. and Nashel'skii, A.Ya., Usp. Khim. 40, 1309 (1971, in Russian).CrossRefGoogle Scholar
59.Demidenko, A.F., Koshchenko, V.I., Sabanova, L.D., and Gran, Yu.M., Russ. J. Phys. Chem. 49, 940 (1975).Google Scholar
60.Madar, R., Jacob, G., Hallais, J., and Fruchart, R., J. Cryst. Growth 31, 197 (1975).CrossRefGoogle Scholar
61.Karpinski, J. and Porowski, S., J. Cryst. Growth 66, 11 (1984).CrossRefGoogle Scholar
62.Ranade, M.R., Tessier, F., Navrotsky, A., Leppert, V.J., Risbud, S.H., DiSalvo, F.J., and Balkas, C.M., J. Phys. Chem. B 104, 4060 (2000).CrossRefGoogle Scholar
63.Koshenko, V.I., Demidenko, A.F., Sabanova, L.D., Yachmenev, V.E., Gran, V.E., and Radchenko, A.E., Inorg. Mater. 15, 1329 [1979, translated from Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 1686 (1979)].Google Scholar
64.Davydov, A. and Anderson, T.J., in III-V Nitride Materials and Processes III, edited by Moustakas, T.D., Mohney, S.E., and Pearton, S.J. (Electrochem. Soc., Pennington, NJ, 1999), Vol. 98–18, pp. 3849.Google Scholar
65.Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, London, U.K., 1979).Google Scholar
66.Landolt-Boernstein, D.T., Numerical Data and Functional Relationship in Science and Technology, edited by Madelung, O. (Springer-Verlag, New York, 1982), p. 17a.Google Scholar
67.Kaufman, L., Nell, J., Taylor, K., and Hayes, F., CALPHAD 5, 185 (1981).CrossRefGoogle Scholar
68.Ansara, I., Chatillon, C., Lukas, H.L., Nishizawa, T., Othani, H., Ishida, K., Hillert, M., Sundman, B., Argent, B.B., Watson, A., Chart, T.G., and Anderson, T., CALPHAD 18, 177 (1994).CrossRefGoogle Scholar
69.Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H., Nat. Bur. Stand. Tech. Note No. 270–3, Gaithersburg, MD (1968).Google Scholar
70.Yamaguchi, K., Itagaki, K., and Chang, Y.A., CALPHAD 20, 439 (1996).CrossRefGoogle Scholar
71.Ilegems, M., Panish, M.B., and Arthur, J.R., J. Chem. Thermodynam. 6, 157 (1974).CrossRefGoogle Scholar
72.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K.K., Selected Values of Thermodynamic Properties of Binary Alloys(ASM, Metals Park, OH, 1973).Google Scholar
73.Marina, L.I. and Nashel'skii, A.Ya., Russ. J. Phys. Chem. 43, 963 (1969).Google Scholar