Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T22:57:37.510Z Has data issue: false hasContentIssue false

Densification and grain growth of Al-doped ZnO

Published online by Cambridge University Press:  31 January 2011

Jiaping Han
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
P. Q. Mantas
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
A. M. R. Senos
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
Get access

Abstract

The densification and grain growth of ZnO doped with Al from 0.08 to 1.2 mol% were investigated during isothermal sintering between 1100 and 1400 °C. The Al dopant significantly inhibited the grain growth of ZnO and increased the grain growth exponent from 3 for pure ZnO to 4–6 for Al-doped ZnO. The grain growth activation energy was also changed from approximately 200 kJ/mol for pure ZnO to approximately 480 kJ/mol for Al-doped ZnO. The results of x-ray diffraction, scanning electron microscopy, and transmission electron microscopy showed that a ZnAl2O4 spinel phase existed as a second phase at the ZnO grain boundaries in Al-doped ZnO specimens. The spinel particles exerted an effective drag (pinning) on the migration of ZnO grain boundaries. The analyses of the Al doping effect on the densification rate provided evidence that the driving force for densification was reduced by the second-phase particles. A mechanism of pore surface drag (pinning) on densification equivalent to the observed drag (pinning) of grain boundaries on grain growth was proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kim, J., Kimura, T., and Yamguchi, T., J. Mater. Sci. 24, 213 (1989).CrossRefGoogle Scholar
2.Kim, J., Kimura, T., and Yamguchi, T., J. Mater. Sci. 24, 2581 (1989).CrossRefGoogle Scholar
3.Senda, T. and Bradt, R.C., J. Am. Ceram. Soc. 74, 1296 (1991).CrossRefGoogle Scholar
4.Kim, J., Kimura, T., and Yamguchi, T., J. Am. Ceram. Soc. 72, 1541 (1989).CrossRefGoogle Scholar
5.Fan, J. and Freer, R., J. Mater. Sci. 32, 415 (1997).CrossRefGoogle Scholar
6.Han, J., Senos, A.M.R., and Mantas, P.Q., J. Eur. Ceram. Soc. 19, 1003 (1999).CrossRefGoogle Scholar
7.Komatsu, W., Miyamoto, M., Hujita, S., and Moriyoshi, Y., Yogyo Kyokaishi 76, 407 (1968).CrossRefGoogle Scholar
8.Quadir, T. and Readey, D.W., J. Am. Ceram. Soc. 72, 297 (1989).CrossRefGoogle Scholar
9.Nunes, S.I. and Bradt, R.C., J. Am. Ceram. Soc. 78, 2469 (1995).CrossRefGoogle Scholar
10.Senos, A.M.R., Ph.D. Thesis, University of Aveiro, Aveiro, Portugal (1993).Google Scholar
11.Gupta, T.K. and Coble, R.L., J. Am. Ceram. Soc. 51, 521 (1968).CrossRefGoogle Scholar
12.Dutta, S.K. and Spriggs, R.M., J. Am. Ceram. Soc. 53, 61 (1970).CrossRefGoogle Scholar
13.Mantas, P.Q. and Baptista, J.L.. J. Eur. Ceram. Soc. 15, 605 (1995).CrossRefGoogle Scholar
14.Costa, M.E.V., Mantas, P.Q., and Baptista, J.L., Sens. Activators B 26–27, 312 (1995).CrossRefGoogle Scholar
15.van de Pol, F.C.M., Ceram. Bull. 69, 1959 (1990).Google Scholar
16.Underwood, E.E., Quantitative Stereology (Addison-Wesley, Reading, MA, 1971), p. 119.Google Scholar
17.Nicholson, G.C., J. Am. Cerem. Soc. 48, 214 (1969).CrossRefGoogle Scholar
18.Senda, T. and Bradt, R.C., J. Am. Ceram. Soc. 73, 106 (1990).CrossRefGoogle Scholar
19.Watari, T. and Bradt, R.C., J. Ceram. Soc. Jpn. 101, 1085 (1993).CrossRefGoogle Scholar
20.Freer, R., J. Mater. Sci. 15, 803 (1980).CrossRefGoogle Scholar
21.Secco, E.A. and Moore, W.J., J. Chem. Phys. 26, 942 (1957).CrossRefGoogle Scholar
22.Hong, W. and De Jonghe, L.C., J. Am. Ceram. Soc. 78, 3217 (1995).CrossRefGoogle Scholar
23.Norman, V.J., Aust. J. Chem. 22, 325 (1969).CrossRefGoogle Scholar
24.Rahaman, M.N., Ceramic Processing and Sintering (Marcel Dekker, New York, 1995), p. 441.Google Scholar
25.Beere, W., Acta Metall. 23, 139 (1975).CrossRefGoogle Scholar
26.Takata, M., Tsubone, D., and Yanagida, H., J. Am. Ceram. Soc. 59, 4 (1976).CrossRefGoogle Scholar
27.Sbrockey, N.M. and Johnson, D.L., Mater. Sci. Res. 13, 177 (1980).Google Scholar
28.Vieira, J.M. and Senos, A.M.R., in Abstract Book of the 7th International Conference on Intergranular and Interphase Boundaries in Materials (University of Lisbon, Lisbon, Portugal, 1995), p. 163.Google Scholar
29.Brook, R.J., in Treatise on Materials Science and Technology, edited by Wang, F.F.Y. (Academic Press, New York, 1976), Vol. 9, p. 331.Google Scholar
30.Zener, C., as communicated by C.S. Smith, Trans. Am. Inst. Min. Metall. Soc. 175, 15 (1948).Google Scholar
31.Haroun, N.A. and Budworth, D.W., J. Mater. Sci. 3, 326 (1968).CrossRefGoogle Scholar
32.Gladman, T., Proc. R. Soc. London A 294, 298 (1966).Google Scholar
33.Stearns, L.C. and Harmer, M.P., J. Am. Ceram. Soc. 79, 3020 (1996).CrossRefGoogle Scholar
34.Levinson, L.M. and Philipp, H.R., Am. Ceram. Soc. Bull. 65, 639 (1986).Google Scholar
35.Bradt, R.C., Nunes, S.I., Senda, T., Suzuki, H., and Burkett, S.L. in Sintering Technology, edited by German, R.M. and Cornwall, R.G. (Marcel Dekker, New York, 1996), p. 389.Google Scholar
36.Suzuki, H. and Bradt, R.C., J. Am. Ceram. Soc. 78, 1354 (1995).CrossRefGoogle Scholar