Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T12:12:11.060Z Has data issue: false hasContentIssue false

Adhesion and reliability of copper interconnects with Ta and TaN barrier layers

Published online by Cambridge University Press:  31 January 2011

Michael Lane
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
Reinhold H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
Nety Krishna
Affiliation:
Applied Materials Corporation, Santa Clara, California 95052
Imran Hashim
Affiliation:
Applied Materials Corporation, Santa Clara, California 95052
Get access

Extract

With the advent of copper metallization in interconnect structures, new barrier layers are required to prevent copper diffusion into adjacent dielectrics and the underlying silicon. The barrier must also provide adequate adhesion to both the dielectric and copper. While Ta and TaN barrier layers have been incorporated for these purposes in copper metallization schemes, little quantitative data exist on their adhesive properties. In this study, the critical interface fracture energy and the subcritical debonding behavior of ion-metal-plasma sputtered Ta and TaN barrier layers in Cu interconnect structures were investigated. Specifically, the effects of interfacial chemistry, Cu layer thickness, and oxide type were examined. Behavior is rationalized in terms of relevant reactions at the barrier/dielectric interface and plasticity in adjacent metal layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murarka, S.P. and Hymes, S.W., Crit. Rev. Solid State Mater. Sci. 20(2), 87 (1995).CrossRefGoogle Scholar
2.Ryu, C-S., Loke, A.L.S, Nogami, T., and Wong, S.S., Proc. IEEE-IRPS 201 (1997).Google Scholar
3.Zielinski, E.M., Vinci, R.P., and Bravman, J.C., J. Electron. Mater. 24, 1485 (1995).CrossRefGoogle Scholar
4.Stolt, L. and d'Heurle, F.M., Thin Solid Films 189, 269 (1990).Google Scholar
5.Cros, A., Aboelfotoh, M.O., and Tu, K.N., J. Appl. Phys. 67, 3328 (1990).CrossRefGoogle Scholar
6.Kolawa, E., Chen, J.S., Reid, J.S., Pokela, P.J., and Nicolet, M-A., J. Appl. Phys. 70, 1369 (1991).CrossRefGoogle Scholar
7.Holloway, K. and Fryer, P., Appl. Phys. Lett. 57, 1736 (1990).Google Scholar
8.Hutchinson, J.W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J.W. and Yu, T.Y. (Academic Press, New York, 1991), pp. 63191.Google Scholar
9.Lane, M., Dauskardt, R.H., Ware, R., Ma, Q., and Fujimoto, H., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Zuo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 2126.Google Scholar
10.Ma, Q., Bumgarner, J., Fujimoto, H., Lane, M., and Dauskardt, R.H., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Zuo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), pp. 314.Google Scholar
11.Dauskardt, R.H., Lane, M., Ma, Q., and Krishna, N., Eng. Fract. Mech. 61, 141 (1998).CrossRefGoogle Scholar
12.Lane, M., Dauskardt, R.H., Ma, Q., Fujimoto, H., and Krishna, N., in Thin-Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M.A., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), pp. 357362.Google Scholar
13.Evans, A.G., and Hutchinson, J.W., Acta Metall. 37, 909 (1989).CrossRefGoogle Scholar
14.Evans, A.G., Ruhle, M., Dalgleish, B.J., and Charlambides, P.G., Metall. Trans. A 21A, 2419 (1990).CrossRefGoogle Scholar
15.Gumbsh, P., Mater. Sci. Eng. A260, 72 (1999).CrossRefGoogle Scholar
16.Ma, Q., J. Mater. Res. 12, 840 (1997).CrossRefGoogle Scholar
17.Xu, G., He, M-Y., and Clarke, D.R., Acta Metall. (1999, in press).Google Scholar
18.Wiederhorn, S.M., J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
19.Michalske, T. and Bunker, B., J. Am. Ceram. Soc. 70, 780 (1987).CrossRefGoogle Scholar
20.Lane, M. and Dauskardt, R.H. (unpublished).Google Scholar
21.Bhatnagar, A., Hoffman, M.J., and Dauskardt, R.H., Am. Ceram. Soc. (1999, in press).Google Scholar
22.Mencik, J., Strength and Fracture of Glass and Ceramics (Elsevier Science Publishers, New York, 1992).Google Scholar
23.Handbook of Chemistry and Physics, 72nd ed., edited by Lide, D. (CRC Press, Boca Raton, FL, 1992).Google Scholar
24.Rice, J.R. and Wang, J.S., Mater. Sci. Eng. A107, 23 (1989).CrossRefGoogle Scholar
25.Klein, P. and Gao, H., Eng. Fract. Mech. (1999, in press).Google Scholar
26.Hutchinson, J.W. and Evans, A.G., Harvard University Report, May 1999.Google Scholar
27.Lane, M., Vainchtein, A., Gao, H. and Dauskardt, R.H., Stanford University (1999, unpublished results).Google Scholar
28.Wagner, C.D. and Bickham, D.M., NIST X-ray Photoelectron Spectroscopy Database (U.S. Department of Commerce, Washington, DC, 1989).Google Scholar