Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T23:28:05.382Z Has data issue: false hasContentIssue false

An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts

Published online by Cambridge University Press:  31 January 2011

A. Govindaraj
Affiliation:
CSIR Centre of Excellence in Chemistry, Indian Institute of Science, Bangalore 560012, India
E. Flahaut
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse cedex 4, France
Ch. Laurent
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse cedex 4, France
A. Peigney
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse cedex 4, France
A. Rousset
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse cedex 4, France
C. N. R. Rao
Affiliation:
CSIR Centre of Excellence in Chemistry, Indian Institute of Science, Bangalore 560012, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
Get access

Abstract

Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Calvert, P., Nature 357, 365 (1992).CrossRefGoogle Scholar
3.Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D., Science 265, 1212 (1994).CrossRefGoogle Scholar
4.Ruoff, R. S. and Lorents, D. C., Carbon 33, 925 (1995).CrossRefGoogle Scholar
5.Sinnott, S. B., White, C. T., and Brenner, D. W., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R.M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), p. 241.Google Scholar
6.Despres, J. F., Daguerre, E., and Lafdi, K., Carbon 33, 87 (1995).CrossRefGoogle Scholar
7.Iijima, S., Brabec, Ch., Maiti, A., and Bernholc, J., J. Phys. Chem. 104, 2089 (1996).CrossRefGoogle Scholar
8.Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature 381, 678 (1996).CrossRefGoogle Scholar
9.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1994).CrossRefGoogle Scholar
10.Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
11.Langer, L., Stockman, L., Heremans, J.P., Bayot, V., Olk, C. H., Van Haesendonck, C., Bruynseraede, Y., and Issi, J. P., J. Mater. Res. 9, 927 (1994).CrossRefGoogle Scholar
12.Nakayama, Y., Akita, S., and Shimada, Y., Jpn. J. Appl. Phys. 34, L10 (1995).CrossRefGoogle Scholar
13.Kasumov, A. Yu., Khodos, I.I., Ajayan, P. M., and Colliex, C., Europhys. Lett. 34, 429 (1996).CrossRefGoogle Scholar
14.Ebbesen, T.W., Lezec, H. J., Hiura, H., Bennett, J.W., Ghaemi, H.F., and Thio, T., Nature 382, 54 (1996).CrossRefGoogle Scholar
15.Dai, H., Wong, E. W., and Lieber, C. M., Science 272, 523 (1996).CrossRefGoogle Scholar
16.Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L. J., and Dekker, C., Nature 386, 474 (1997).CrossRefGoogle Scholar
17.Ebbesen, T.W. and Ajayan, P. M., Nature 358, 220 (1992).CrossRefGoogle Scholar
18.Rao, C. N. R., Seshadri, R., Sen, R., and Govindaraj, A., Mater. Sci. Engg. R15, 209 (1995).CrossRefGoogle Scholar
19.Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
20.Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
21.Kian, C. H., Goddard, W. A. III, Beyers, R., Salem, J.R., and Bethune, D., J. Phys. Chem. Solids 57, 35 (1996).CrossRefGoogle Scholar
22.Seraphin, S. and Zhou, D., Appl. Phys. Lett. 64, 2087 (1994).CrossRefGoogle Scholar
23.Guerret-Plecourt, C., Le Bouar, Y., Loiseau, A., and Pascard, H., Nature 372, 761 (1994).CrossRefGoogle Scholar
24.Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de la Chapelle, M. Lamy, Lefrant, S., Deniard, P., Lee, R., and Fisher, J. E., Nature 388, 756 (1997).CrossRefGoogle Scholar
25.Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., Nature 367, 519 (1992).CrossRefGoogle Scholar
26.Tohji, K., Goto, T., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuhka, A., Oshuna, T., Hiraga, K., and Nishima, Y., Nature 383, 679 (1996).CrossRefGoogle Scholar
27.Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
28.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinkler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fisher, J. E., and Smalley, R. E., Science 273, 483 (1996).CrossRefGoogle Scholar
29.Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335 (1976).CrossRefGoogle Scholar
30.Benissad-Aissani, F. and Gadelle, P., Carbon 31, 21 (1993).CrossRefGoogle Scholar
31.Yacaman, M. J., Yoshida, M. M., Rendon, L., and Santiesteban, J.G., Appl. Phys. Lett. 62, 657 (1993).CrossRefGoogle Scholar
32.Baker, R. T. K. and Rodriguez, N., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., Pouch, J. J., and Achiba, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), p. 251.Google Scholar
33.Ivanov, V., Fonseca, A., Nagy, J. B., Lucas, A., Lambin, P., Bernaerts, D., and Zhang, X. B., Carbon 33, 1727 (1995).CrossRefGoogle Scholar
34.Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Riga, J., and Lucas, A., Synth. Metals 77, 31 (1996).CrossRefGoogle Scholar
35.Fonseca, A., Hernadi, K., Nagy, J. B., Lambin, Ph., and Lucas, A., Carbon 33, 1759 (1995).CrossRefGoogle Scholar
36.Sen, R., Govindaraj, A., and Rao, C. N. R., Chem. Phys. Lett. 267, 276 (1997); also seeCrossRefGoogle Scholar
Rao, C. N. R., Sen, R., Satishkumar, B. C., and Govindaraj, A., Chem. Commun. 1525 (1998).CrossRefGoogle Scholar
37.Herrere, S. and Gadelle, P., Carbon 33, 234 (1995).CrossRefGoogle Scholar
38.Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H. W., and Sarkar, A., Carbon 33, 873 (1993).CrossRefGoogle Scholar
39.Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar
40.Tibbetts, G. G., J. Cryst. Growth 66, 632 (1984).CrossRefGoogle Scholar
41.Baker, R. T. K., Harris, P. S., Thomas, R. B., and Waite, R. J., J. Catal. 30, 86 (1993).CrossRefGoogle Scholar
42.Amelinckx, S., Zhang, X. B., Bernaerts, D., Zhang, X. F., Ivanov, V., and Nagy, J. B., Science 265, 635 (1995).CrossRefGoogle Scholar
43.Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., Fudala, A., and Lucas, A. A., Zeolites 17, 416 (1996).CrossRefGoogle Scholar
44.Verelst, M., Kannan, K. R., Subbanna, G. N., Rao, C. N. R., Laurent, Ch., and Rousset, A., J. Mater. Res. 7, 3072 (1992).CrossRefGoogle Scholar
45.Devaux, X., Laurent, Ch., and Rousset, A., Nanostruct. Mater. 2, 339 (1993).CrossRefGoogle Scholar
46.Laurent, Ch., Rousset, A., Verelst, M., Kannan, K. R., Raju, A. R., and Rao, C. N. R., J. Mater. Chem. 3, 513 (1993).CrossRefGoogle Scholar
47.Laurent, Ch., Demai, J. J., Rousset, A., Kannan, K. R., and Rao, C. N. R., J. Mater. Res. 9, 229 (1994).CrossRefGoogle Scholar
48.Laurent, Ch., Blaszczyk, Ch., Brieu, M., and Rousset, A., Nanostruct. Mater. 6, 317 (1995).CrossRefGoogle Scholar
49.Quénard, O., Laurent, Ch., Brieu, M., and Rousset, A., Nanostruct. Mater. 7, 497 (1996).CrossRefGoogle Scholar
50.Quénard, O., De Grave, E., Laurent, Ch., and Rousset, A., J. Mater. Chem. 7, 2457 (1997).CrossRefGoogle Scholar
51.Carles, V., Brieu, M., and Rousset, A., Nanostruct. Mater. 8, 529544 (1997).CrossRefGoogle Scholar
52.Peigney, A., Laurent, Ch., Dobigeon, F., and Rousset, A., J. Mater. Res. 12, 613 (1997).CrossRefGoogle Scholar
53. Ch. Laurent, Peigney, A., and Rousset, A., J. Mater. Chem. 8, 1263 (1998).Google Scholar
54.Peigney, A., Laurent, Ch., Dumortier, O., and Rousset, A., J. Eur. Ceram. Soc., unpublished.Google Scholar
55.Rao, C.N.R, Chemical Approaches to the Synthesis of Inorganic Materials (John Wiley, Chichester, 1994).Google Scholar
56.Kingsley, J. J. and Patil, K. C., Mater. Lett. 6, 427 (1988).CrossRefGoogle Scholar
57.Patil, K.C., Bull. Mater. Sci. 16, 533 (1993).CrossRefGoogle Scholar
58.Jain, S.R., Adiga, K.C., and Pai Verneker, V. R., Combust. Flame 40, 71 (1981).CrossRefGoogle Scholar
59.Seshadri, R., Govindaraj, A., Aiyer, H.N., Sen, R., Subbanna, G. N., Raju, A.R., and Rao, C. N. R., Curr. Sci. (India), 66, 839 (1994).Google Scholar
60.Quénard, O., Doctoral Thesis, Toulouse, 280 pp. (1997).Google Scholar
61.Jablonski, G.A., Geurts, F. W., Sacco, A. Jr, and Biederman, R. R., Carbon 30, 87 (1992).CrossRefGoogle Scholar
62.Iijima, S., Ajayan, P.M., and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).CrossRefGoogle Scholar
63.Rodriguez, N.M., Kim, M.S., and Baker, R. T. K., J. Phys. Chem. 98, 13108 (1994).CrossRefGoogle Scholar
64.Downs, W.B. and Baker, R. T.K, J. Mater. Res. 10, 625 (1995).CrossRefGoogle Scholar
65.Satishkumar, B.C., Govindaraj, A., and Rao, C.N.R, J. Phys. B 29, 4925 (1996).CrossRefGoogle Scholar