Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T21:15:15.064Z Has data issue: false hasContentIssue false

Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals

Published online by Cambridge University Press:  31 January 2011

Takeshi Ohgaki*
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Naoki Ohashi
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Shigeaki Sugimura
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Haruki Ryoken
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Isao Sakaguchi
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Yutaka Adachi
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Hajime Haneda
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
*
a) Address all correspondence to this author. e-mail: OGAKI.Takeshi@nims.go.jp
Get access

Abstract

We report on the effect of sample non-uniformity on the results of Hall-effect measurements. False positive Hall coefficients were obtained from an evidently n-type ZnO single crystal, although four electrodes with low contact resistance were made and the Van der Pauw parameter for this electrode configuration was close to 1.00. Further position-sensitive characterization revealed that the false positive Hall coefficient was due to non-uniform electrical properties of the sample. To demonstrate a false positive sign of the Hall coefficient due to sample non-uniformity, we devised a model structure made from evident n-type ZnO thin film and successfully reproduced a false positive Hall coefficient from n-type ZnO.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, H.Hosono, H.: Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475 2000Google Scholar
2Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H.Kawasaki, M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 2005Google Scholar
3Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y.Goto, T.: Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230 1997Google Scholar
4Fortunato, E.M.C., Barquinha, P.M.C., Pimentel, A.C.M.B.G., Gonçalves, A.M.F., Marques, A.J.S., Pereira, L.M.N.Martins, R.F.P.: Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17, 590 2005Google Scholar
5Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M.Shimizu, A.: Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys. 36, L1453 1997Google Scholar
6Joseph, M., Tabata, H.Kawai, T.: p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. 38, L1205 1999Google Scholar
7Kim, K.K., Kim, H.S., Hwang, D.K., Lim, J.H.Park, S.J.: Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett. 83, 63 2003Google Scholar
8Ryu, Y.R., Zhu, S., Look, D.C., Wrobel, J.M., Jeong, H.M.White, H.W.: Synthesis of p-type ZnO films. J. Cryst. Growth 216, 330 2000Google Scholar
9Van der Pauw, L.J.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1 1958Google Scholar
10Ohgaki, T., Sugimura, S., Ohashi, N., Sakaguchi, I., Sekiguchi, T.Haneda, H.: Structure and properties of GaN films grown on single crystalline ZnO substrates by molecular beam epitaxy. J. Cryst. Growth 275, e1143 2005Google Scholar
11Ohashi, N., Ohgaki, T., Sugimura, S., Maeda, K., Sakaguchi, I., Ryoken, H., Niikura, I., Sato, M.Haneda, H.: Characterization of zinc oxide single crystals for epitaxial wafer applications in Progress in Compound Semiconductor Materials III–Electronic and Optoelectronic Applications, edited by D.J. Friedman, O. Manasreh, I.A. Buyanova, A. Munkholm, and F.D. Auret Mater. Res. Soc. Symp. Proc. 799, 2004 Z5.40, p. 255Google Scholar
12Ryoken, H., Sakaguchi, I., Ohashi, N., Sekiguchi, T., Hishita, S.Haneda, H.: Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method. J. Mater. Res. 20, 2866 2005Google Scholar
13Wang, Y-G., Ohashi, N., Ryoken, H.Haneda, H.: Virtual structure in luminescence profile of zinc oxide films causing discrepancy in peak identification. J. Appl. Phys. 100, 114917 2006Google Scholar