Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T07:58:38.042Z Has data issue: false hasContentIssue false

Low-temperature gas sensing in individual metal–oxide–metal heterojunction nanowires

Published online by Cambridge University Press:  31 January 2011

Jason S. Tresback
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Nitin P. Padture*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
a)Address all correspondence to this author. e-mail: padture.1@osu.edu
Get access

Abstract

CO-gas-sensing response of individual metal–oxide–metal (MOM) heterojunction nanowires (∼250 nm diameter) in the Au–NiO–Au system, where a nanoscale segment of NiO oxide (∼250 nm long) is sandwiched axially between Au nanowires, and between individual all-oxide NiO nanowires (∼250 nm diameter, ∼5 μm long), has been measured at 150 °C. While the all-oxide nanowires are highly resistive and show no measurable response, the MOM nanowires show ∼25% decrease in current with the introduction of 800 ppm CO. The response is reversible, but it is slow due to the low temperature used. MOM nanowires, by virtue of the nanoscale-dimension, low-resistance oxide segment and the high-quality “end-on” metal–oxide contact, are an attractive class of nanowire gas-sensing elements for potential use in multifunctional “bottom up” nanoelectronics.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, C.O.Akbar, S.A.: Ceramics for chemical sensing. J. Mater. Sci. 38, 4611 2003CrossRefGoogle Scholar
2Barsan, N., Schweizer-Berberich, M.Goepel, W.: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365, 287 1999CrossRefGoogle Scholar
3Comini, E., Faglia, G., Sberveglieria, G., Pan, Z.Wang, Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 2002CrossRefGoogle Scholar
4Law, M., Kind, H., Messer, B., Kim, F.Yang, P.D.: Photochemical sensing of NO2 with SnO2 nanoribbon nanosensor at room temperature. Angew. Chem. 41, 2405 20023.0.CO;2-3>CrossRefGoogle ScholarPubMed
5Kolmakov, A., Zhang, Y., Cheng, G.Moskovits, M.: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 2003CrossRefGoogle Scholar
6Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J.Zhou, C.: In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613 2003CrossRefGoogle Scholar
7Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P.Lin, C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 2004CrossRefGoogle Scholar
8Kolmakov, A.Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal–oxide nanostructures. Annu. Rev. Mater. Sci. 34, 151 2004CrossRefGoogle Scholar
9Gouma, P., Sberveglieri, G., Dutta, R., Gardner, J.W.Hines, F.L.: Novel materials and applications of electronic noses and tongues. MRS Bull. 29, 697 2004CrossRefGoogle Scholar
10Yu, C., Hao, Q., Saha, S., Shi, L., Kong, X.K.Wang, Z.L.: Integration of metal oxide nanobelts with microsystems for nerve detection. Appl. Phys. Lett. 86, 63101 2005CrossRefGoogle Scholar
11Fan, Z.Y.Lu, J.G.: Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 86, 123510 2005CrossRefGoogle Scholar
12Comini, E.: Metal oxide nano crystals for gas sensing. Anal. Chim. Acta 568, 28 2006CrossRefGoogle ScholarPubMed
13Lu, J.G., Chang, P.Fan, Z.: Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 2006CrossRefGoogle Scholar
14Sysoev, V.V., Button, B.K., Wepsiec, K., Dmitriev, S.Kolmakov, A.: Toward the nanoscopic electronics nose: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett. 6, 1584 2006CrossRefGoogle ScholarPubMed
15Shyue, J-J., Cochran, R.E.Padture, N.P.: Transparent-conducting, gas-sensing nanostructures (nanowires, nanotubes, thin films) of titanium oxide synthesized at near-ambient conditions. J. Mater. Res. 21, 2894 2006CrossRefGoogle Scholar
16Cochran, R.E., Shyue, J-J.Padture, N.P.: Template-based, near-ambient synthesis of crystalline metal–oxide nanotubes, nanowires and coaxial nanotubes. Acta Mater. 55, 3007 2007CrossRefGoogle Scholar
17Meier, D.C., Semancik, S., Button, B., Strelcov, E.Kolmakov, A.: Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl. Phys. Lett. 81, 063118 2007CrossRefGoogle Scholar
18Lieber, C.M.: Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 2003CrossRefGoogle Scholar
19Tresback, J.S., Vasiliev, A.L.Padture, N.P.: Engineered metal–oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 2005CrossRefGoogle Scholar
20Tresback, J.S., Vasiliev, A.L., Padture, N.P., Park, S-Y.Berger, P.R.: Characterization and electrical properties of individual Au–NiO–Au heterojunction nanowires. IEEE Trans. Nanotechnol. 6, 676 2007CrossRefGoogle Scholar
21Shyue, J-J.Padture, N.P.: Template-directed, near-ambient synthesis of Au–TiO2–Au heterojunction nanowires mediated by self-assembled monolayers (SAMs). Mater. Lett. 61, 182 2007CrossRefGoogle Scholar
22Herderick, E.D., Tresback, J.S., Vasiliev, A.L.Padture, N.P.: Template-directed synthesis, characterization, and electrical properties of Au–TiO2–Au heterojunction nanowires. Nanotechnology 18, 155204 2007CrossRefGoogle Scholar
23Kittel, C.: Introduction to Solid State Physics Wiley New York, NY 1986Google Scholar
24Powell, R.J.Spicer, W.E.: Optical properties of NiO and CoO. Phys. Rev. B 2, 2182 1970CrossRefGoogle Scholar
25Wilhelm, S.M.Hackerman, N.: Photochemical characterization of the passive films on iron and nickel. J. Electrochem. Soc. 128, 1668 1981CrossRefGoogle Scholar
26Alcock, B.C., Li, Z., Fergus, W.J.Wang, L.: New electrochemical sensors for oxygen determination. Solid State Ionics 39, 53 1992Google Scholar
27Hotovy, I., Huran, H.J., Spiess, L., Capkovic, R.Hascik, S.: Preparation and characterization of NiO thin films for gas sensor applications. Vacuum 58, 300 2000CrossRefGoogle Scholar
28Dirksen, J.A., Duval, K.Ring, T.: NiO thin film formaldehyde gas sensor. Sens. Actuators, B 80, 106 2001CrossRefGoogle Scholar
29Hotovy, I., Rehacek, V., Siciliano, P., Capone, S.Spiess, L.: Characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 418, 9 2002CrossRefGoogle Scholar
30Shin, W., Matsumiya, M., Qiu, F., Izu, N.Murayama, N.: Thermoelectric gas sensor for detection of high hydrogen concentration. Sens. Actuators, B 97, 344 2004CrossRefGoogle Scholar
31Gopal, V., Radmilovic, V.R., Daraio, C., Jin, S., Yang, P.D.Stach, E.A.: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 2004CrossRefGoogle Scholar
32Kasap, S.O.: Principles of Electronic Materials and Devices McGraw Hill New York, NY 2005Google Scholar
33Okazawa, T., Fujiwara, M., Nishimura, T., Akita, T., Kohyama, M.Kido, Y.: Growth mode and electronic structure of Au nano-clusters on NiO (001) and TiO2 (110). Surf. Sci. 600, 1331 2006CrossRefGoogle Scholar
34Koffyberg, F.P.Benko, F.A.: p-Type NiO as a photocatalysis cathode. J. Electrochem. Soc. 128, 2476 1981CrossRefGoogle Scholar