Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T10:14:39.771Z Has data issue: false hasContentIssue false

Atomic layer deposition of HfO2, Al2O3, and HfAlOx using O3 and metal(diethylamino) precursors

Published online by Cambridge University Press:  31 January 2011

Rajesh Katamreddy
Affiliation:
American Air Liquide, Chicago Research Center, Countryside, Illinois 60525; and Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607
Ronald Inman
Affiliation:
American Air Liquide, Chicago Research Center, Countryside, Illinois 60525
Gregory Jursich
Affiliation:
American Air Liquide, Chicago Research Center, Countryside, Illinois 60525
Axel Soulet
Affiliation:
American Air Liquide, Chicago Research Center, Countryside, Illinois 60525
Christos Takoudis*
Affiliation:
Departments of Chemical Engineering and Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
*
a)Address all correspondence to this author. e-mail: takoudis@uic.edu
Get access

Abstract

Tetrakis-diethylamino hafnium (TDEAH), tris-diethylamino aluminum (TDEAA), and ozone were used for the atomic layer deposition (ALD) of HfO2, Al2O3, and HfAlOx films. The ALD rates were measured to be 1.1 Å/cycle for HfO2 and 1.3 Å/cycle for Al2O3. The ALD temperature windows were found to be between 200 and 325 °C for TDEAA, and between 200 and 275 °C for TDEAH. The overlap of these ALD windows between 200 and 275 °C is critical for ALD of the composite film, HfAlOx. In addition to the overlapping ALD temperature windows, the two metal precursors have similar thermal characteristics, as shown by TGA and differential scanning calorimetry. As-deposited films and films postannealed at 600 and 800 °C films were analyzed using Fourier transformed infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction (XRD) techniques. FTIR spectra revealed interfacial oxide growth during deposition of both HfO2 and Al2O3 whose thickness increased with annealing temperature. The FTIR data also indicated hydroxyl and nitrate groups in the films; these species were removed after annealing in Ar at a temperature of ⩾600 °C. Both FTIR and XRD results indicated the crystallization of pure HfO2 after annealing at temperatures as low as 600 °C. On the other hand, pure Al2O3 remained amorphous after annealing at temperatures up to 800 °C. XRD data of the composite HfAlOx film show that films deposited by alternating five cycles of HfO2 and one cycle of Al2O3 remained amorphous after annealing at 600 °C. Rutherford backscattering analysis of HfAlOx deposited with a varied number of alternating HfO2 and Al2O3 cycles demonstrated a strong correlation between the cyclic dosage of TDEAA and TDEAH and the film composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Semiconductor Industry Association International Technology Roadmap for Semiconductors Semiconductor Industry Association San Jose, CA 2005Google Scholar
2Wilk, G.D., Wallace, R.M.Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 2001CrossRefGoogle Scholar
3Ritala, M.Leskela, M.: Atomic Layer Deposition Vol. 1, Academic Press San Diego, CA 2001Google Scholar
4Gusev, E.P., Cartier, E., Buchanan, D.A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H.Demic, C.: Ultrathin high-K metal oxides on silicon: Processing, characterization and integration issues. Microelectron. Eng. 59, 341 2001CrossRefGoogle Scholar
5Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices in Papers from the International Conference on Silicon Dielectric Interfaces J. Vac. Sci. Technol., B,1785 2000CrossRefGoogle Scholar
6Ng, K.L., Zhan, N., Kok, C.W., Poon, M.C.Wong, H.: Electrical characterization of the hafnium oxide prepared by direct sputtering of Hf in oxygen with rapid thermal annealing. Microelectron. Rel. 43, 1289 2003CrossRefGoogle Scholar
7Zhan, N., Poon, M.C., Kok, C.W., Ng, K.L.Wong, H.: XPS study of the thermal instability of HfO2 prepared by Hf sputtering in oxygen with RTA. J. Electrochem. Soc. 150, F200 2003CrossRefGoogle Scholar
8Matero, R., Rahtu, A., Ritala, M., Leskela, M.Sajavaara, T.: Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin Solid Films 368, 1 2000CrossRefGoogle Scholar
9Ott, A.W., McCarley, K.C., Klaus, J.W., Way, J.D.George, S.M.: Atomic layer controlled deposition of Al2O3 films using binary reaction sequence chemistry. Appl. Surf. Sci. 107, 128 1996CrossRefGoogle Scholar
10Higashi, G.S.Fleming, C.G.: Sequential surface chemical reaction limited growth of high quality Al2O3 dielectrics. Appl. Phys. Lett. 55, 1963 1989CrossRefGoogle Scholar
11George, S.M., Ott, A.W.Klaus, J.W.: Surface chemistry for atomic layer growth. J. Phys. Chem. 100, 13121 1996CrossRefGoogle Scholar
12Katamreddy, R., Inman, R., Jursich, G., Soulet, A.Takoudis, C.: ALD and characterization of aluminum oxide deposited on Si(100) using tris(diethylamino) aluminum and water vapor. J. Electrochem. Soc. 153, C701 2006CrossRefGoogle Scholar
13Chang, H.S., Baek, S-K., Park, H., Hwang, H., Oh, J.H., Shin, W.S., Yeo, J.H., Hwang, K.H., Nam, S.W., Lee, H.D., Song, C.L., Moon, D.W.Cho, M-H.: Electrical and physical properties of HfO2 deposited via ALD using Hf(OtBu)4 and ozone atop Al2O3. Electrochem. Solid-State Lett. 7, F42 2004CrossRefGoogle Scholar
14Cho, M., Jeong, D.S., Park, J., Park, H.B., Lee, S.W., Park, T.J., Hwang, C.S., Jang, G.H.Jeong, J.: Comparison between atomic-layer-deposited HfO2 films using O3 or H2O oxidant and Hf[N(CH3)2]4 precursor. Appl. Phys. Lett. 85, 5953 2004CrossRefGoogle Scholar
15Kim, J.B., Kwon, D.R., Chakrabarti, K., Lee, C., Oh, K.Y.Lee, J.H.: Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique. J. Appl. Phys. 92, 6739 2002CrossRefGoogle Scholar
16Niinisto, J., Putkonen, M., Niinisto, L., Arstila, K., Sajavaara, T., Lu, J., Kukli, K., Ritala, M.Leskela, M.: HfO2 films grown by ALD using cyclopentadienyl-type precursors and H2O or O3 as oxygen source. J. Electrochem. Soc. 153, F39 2006CrossRefGoogle Scholar
17Liu, X., Ramanathan, S., Longdergan, A., Srivastava, A., Lee, E., Seidel, T.E., Barton, J.T., Pang, D.Gordon, R.G.: ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 152, G213 2005CrossRefGoogle Scholar
18Park, H.B., Cho, M., Park, J., Lee, S.W., Hwang, C.S., Kim, J-P., Lee, J-H., Lee, N-I., Kang, H-K., Lee, J-C.Oh, S-J.: Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant. J. Appl. Phys. 94, 3641 2003CrossRefGoogle Scholar
19Cho, M., Park, H.B., Park, J., Lee, S.W., Hwang, C.S., Jeong, J., Kang, H.S.Kim, Y.W.: Comparison of properties of an Al2O3 thin layers grown with remote O2 plasma, H2O, or O3 as oxidants in an ALD process for HfO2 gate dielectrics. J. Electrochem. Soc. 152, F49 2005CrossRefGoogle Scholar
20Favotto, C., Mansori, M., Tortet, L., Jardet, K.Satre, P.: Synthese par chimie douce et caracterisation d’oxynitrate de hafnium HfO(NO3)2, xH2O. Annal. Chim. Sci. Mater. 26, 71 2001CrossRefGoogle Scholar
21Renault, O., Samour, D., Damlencourt, J-F., Blin, D., Martin, F., Marthon, S., Barrett, N.T.Besson, P.: HfO2/SiO2 interface chemistry studied by synchrotron radiation x-ray photoelectron spectroscopy. Appl. Phys. Lett. 81, 3627 2002CrossRefGoogle Scholar
22Katz-Tsameret, Z.Raveh, A.: Characterization of aluminum based oxide layers formed by microwave plasma in Proceedings of the 41st National Symposium of the American Vacuum Society Vol. 13, American Vacuum Society Denver, CO 1995 1121Google Scholar
23Lin, S-L.Hwang, C-S.: Structures of CeO2–Al2O3–SiO2 glasses. J. Non-Cryst. Solids 202, 61 1996CrossRefGoogle Scholar
24Chowdhuri, A.R., Takoudis, C.G., Klie, R.F.Browning, N.D.: Metalorganic chemical vapor deposition of aluminum oxide on Si: Evidence of interface SiO2 formation. Appl. Phys. Lett. 80, 4241 2002CrossRefGoogle Scholar
25Pacewska, B., Keshr, M.Kluk, O.: Aluminium nitrate as a precursor of mesoporous aluminium oxides. J. Therm. Anal. Cal. 74, 595 2003CrossRefGoogle Scholar
26Park, J., Cho, M., Kim, S.K., Park, T.J., Lee, S.W., Hong, S.H.Hwang, C.S.: Influence of the oxygen concentration of atomic-layer-deposited HfO2 films on the dielectric property and interface trap density. Appl. Phys. Lett. 86, 112907 2005CrossRefGoogle Scholar
27Park, J., Park, T.J., Cho, M., Kim, S.K., Hong, S.H., Kim, J.H., Seo, M., Hwang, C.S., Won, J.Y., Jeong, R.Choi, J-H.: Influence of the oxygen concentration of atomic-layer-deposited HfO2 gate dielectric films on the electron mobility of polycrystalline-Si gate transistors. J. Appl. Phys. 99, 094501 2006CrossRefGoogle Scholar
28Klein, T.M., Niu, D., Epling, W.S., Li, W., Maher, D.M., Hobbs, C.C., Hegde, R.I., Baumvol, I.J.R.Parsons, G.N.: Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Appl. Phys. Lett. 75, 4001 1999CrossRefGoogle Scholar
29Jung, Y-C., Miura, H., Ohtani, K.Ishida, M.: High-quality silicon/insulator heteroepitaxial structures formed by molecular beam epitaxy using Al2O3 and Si. J. Cryst. Growth 196, 88 1999CrossRefGoogle Scholar