Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T02:14:48.474Z Has data issue: false hasContentIssue false

The extent of solid solubility in the RuO2–TiO2 system

Published online by Cambridge University Press:  31 January 2011

Marko Hrovat
Affiliation:
“Jožef Stefan” Institute, University of Ljubljana, Jamova 39, 61000 Ljubljana, Slovenia
Janez Holc
Affiliation:
“Jožef Stefan” Institute, University of Ljubljana, Jamova 39, 61000 Ljubljana, Slovenia
Zoran Samardžija
Affiliation:
“Jožef Stefan” Institute, University of Ljubljana, Jamova 39, 61000 Ljubljana, Slovenia
Goran Dražič
Affiliation:
“Jožef Stefan” Institute, University of Ljubljana, Jamova 39, 61000 Ljubljana, Slovenia
Get access

Abstract

RuO2 single crystals were obtained by evaporation of PbO from Pb2Ru2O6.5 at high temperatures and were verified as good standards for WDS analysis. They were used for the investigation of phase equilibria and the extent of solid solubility in the RuO2–TiO2 system by WDS quantitative microanalysis. The solid solubility at 1350 °C was determined to be 16.5% TiO2 in RuO2 and 13.5% RuO2 in TiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Coombes, J. S. (Ed.), Platinum 1993, edited by Coombes, J.S. (Johnson Matthey Publ., London, 1993), 5051.Google Scholar
2.Beer, H. B., J. Electrochem. Soc. 127 (8), 303C307C (1980).CrossRefGoogle Scholar
3.Pierce, J. W., Kuty, D. W., and Larry, J.L., The chemistry and stability of ruthenium based resistors, Proc. 3rd European Microelectronics Conf. ISHM-Europe 81, Avignon, 1981, 283301.Google Scholar
4.Hoffman, L. C., Ceram. Bull. 63 (4), 572576 (1984).Google Scholar
5.Vest, R. W., Ceram. Bull. 65 (4), 631636 (1986).Google Scholar
6.Shah, J. S. and Hahn, W. C., IEEE Trans. CHMT-1 (4), 383392 (1978).Google Scholar
7.Inokuma, T. and Taketa, Y., Active and Passive Elect. Comp. 12 (3), 155166 (1987).CrossRefGoogle Scholar
8.Hrovat, M., Holc, J., and Kolar, D., J. Mater. Sci. Lett. 12, 18581860 (1993).CrossRefGoogle Scholar
9.Hrovat, M. and Kolar, D., J. Mater. Sci. Lett. 8 (8), 961962 (1989).CrossRefGoogle Scholar
10.Van Loan, P. R., Ceram. Bull. 51 (3), 231233, 242 (1972).Google Scholar
11.Butler, S. R. and Gillson, J. L., Mater. Res. Bull. 6 (2), 8189 (1971).CrossRefGoogle Scholar
12.Vest, R. W., Final Technical Report, Purdue University, ARPA Order No. 1641 (1975), pp. 111117.Google Scholar
13.Hrovat, M., Bernik, S., and Kolar, D., J. Mater. Sci. Lett. 12, 18481850 (1993).CrossRefGoogle Scholar
14.Goldstein, J. I., Scanning Electron Microscopy and X-Ray Micro-analysis (Plenum Press, New York, 1992).CrossRefGoogle Scholar