Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T13:11:43.902Z Has data issue: false hasContentIssue false

Chemical vapor deposition of copper via disproportionation of hexafluoroacetylacetonato(1,5 -cyclooctadiene)copper(I), (hfac)Cu(1,5-COD)

Published online by Cambridge University Press:  31 January 2011

A. Jain
Affiliation:
Department of Chemical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
K.M. Chi
Affiliation:
Department of Chemistry and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
M.J. Hampden-Smith*
Affiliation:
Department of Chemistry and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
T.T. Kodas*
Affiliation:
Department of Chemical Engineering, and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, New Mexico 87131
J.D. Farr
Affiliation:
CLS-1, Los Alamos National Laboratories, Los Alamos, New Mexico 87545
M.F. Paffett
Affiliation:
CLS-1, Los Alamos National Laboratories, Los Alamos, New Mexico 87545
*
a)Authors to whom correspondence should be addressed.
a)Authors to whom correspondence should be addressed.
Get access

Abstract

Hot- and cold-wall chemical vapor deposition (CVD) using the volatile copper(I) compound (hfac)Cu(1,5-COD), where hfac = 1,1,1,5,5,5,-hexafluoroacetylacetonate and 1,5-COD = 1,5-cyclooctadiene, as a precursor was carried out in hot-wall and warm-wall, lamp-heated reactors using SiO2 substrates that had been patterned with Pt or W, over a temperature range 120 °C-250 °C. Deposition was observed onto Pt, W, and SiO2 over this temperature range at rates of up to 3750 Å/min to give copper films that contained no detectable impurities by Auger electron spectroscopy and gave resistivities of 1.9-5.7 μ ohm cm. The volatile by-products formed during deposition were 1,5-COD and Cu(hfac)2 and a mass balance was consistent with the quantitative disproportionation reaction: 2(hfac)Cu(1,5-COD) → Cu + Cu(hfac)2 + 2(1,5-COD). The measured activation energy for this CVD reaction was 26(2) kcal/mol. The absence of selectivity for metal surfaces in the presence of SiO2 is in contrast to CVD results for the related compounds (β-diketonate)Cu(PMe3) where β-diketonate = hfac, 1,1,1-trifluoroacetylacetonate (tfac), and acetylacetonate (acac).

Type
Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Houle, F. A., Jones, C. R., Baum, T. H., Pico, C., and Kovac, C. A., Appl. Phys Lett. 46, 204 (1985).CrossRefGoogle Scholar
2.Oehr, C. and Suhr, H., Appl. Phys. Lett. A 45, 151 (1988).Google Scholar
3.Houle, F. A., Wilson, R. J., and Baum, T. H., J. Vac. Sci Technol. A 4, 2452 (1986).Google Scholar
4.Jones, C. R., Houle, F. A., Kovac, C. A., and Baum, T. H., Appl. Phys. Lett. 46, 97 (1986).Google Scholar
5.Markwalder, B., Widner, M., Braichotte, D., and Van den Bergh, H., J. Appl. Phys. 65, 2470 (1989).Google Scholar
6.Moylan, C. R., Baum, T. H., and Jones, C. R., Appl. Phys. A 40, 1 (1986).CrossRefGoogle Scholar
7.Temple, D. and Reisman, A., J. Electrochem. Soc. 136, 3525 (1989).CrossRefGoogle Scholar
8.Hazuki, Y., Yano, H., Horioka, K., Hayasaka, N., and Okano, H., in Tungsten and Other Advanced Metals for VLSI IULSI Applications V, edited by Wong, S. S. and Furukawa, S. (Mater. Res. Soc. Conf.Proc. V-5, Pittsburgh, PA, 1990), p. 351.Google Scholar
9.Kaloyeros, A. E., Feng, A., Garhart, J., Brooks, K. C., Gosh, S. K., Saxena, A. N., and Luethrs, F., J. Electron. Mater. 19, 271 (1990).Google Scholar
10.Van Hemert, R. L., Spendlove, L. B., and Sievers, R. E., J. Electrochem. Soc. 112, 1123 (1965).Google Scholar
11.Fine, S. J., Norman, J. A. T., Muratore, B. A., and Dyer, P. N., Abst. E4.8 (Mater Res. Soc. Symp. Proc. 204, Pittsburgh, PA 1990).CrossRefGoogle Scholar
12.Jeffries, M. and Girolami, G., Chem. Mater. 1, 8 (1989).Google Scholar
13.Dupuy, C. G., Beach, D. B., Hearst, J. E., and Jasinksi, J., Chem. Mater. 1, 16 (1989).Google Scholar
14.Beach, D. B., LeGoues, F. K., and Hu, C-K., Chem. Mater. 2, 216 (1990).Google Scholar
15.Hampden-Smith, M. J., Kodas, T. T., Paffett, M., Farr, J. D., and Shin, H-K., Chem. Mater. 2, 636 (1990).Google Scholar
16.Shin, H-K., Hampden-Smith, M. J., Kodas, T. T., Paffett, M., and Farr, J. D. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), p. 421Google Scholar
17.Shin, H-K., Hampden-Smith, M. J., Kodas, T. T., and Duesler, E. N., Polyhedron 6, 645 (1991).Google Scholar
18.Shin, H-K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M., and Farr, J. D., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), p. 61.Google Scholar
19.Shin, H-K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Paffett, M., and Farr, J. D., Angew. Chemie Adv. Mater. 3, 246 (1991).Google Scholar
20.Norman, J., Schumacher 3rd Annual Dielectrics and Metallization Symposium, San Diego, CA, February 1991.Google Scholar
21.Kumar, R., Maverick, A. W., Fronczek, F. R., Lai, G., and Griffin, G. L., Am. Chem. Soc. Meeting, Spring 1991, Atlanta, GA, Inor. 256 (1991).Google Scholar
22.Doyle, G., Eriksen, K. A., and Van Engen, D., Organometallics 4, 830 (1985).CrossRefGoogle Scholar
23.Chi, K. M., Shin, H-K., Hampden-Smith, M. J., Kodas, T. T., and Duesler, E. N., Polyhedron (1991 in press).Google Scholar
24.Jain, A., Chi, K. M., Kodas, T. T., Hampden-Smith, M. J., Farr, J. D., and Paffett, M. F., Chem. Mater. (1991, in press).Google Scholar
25.Shin, H-K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M., manuscript in preparation.Google Scholar