Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T21:34:08.973Z Has data issue: false hasContentIssue false

Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices

Published online by Cambridge University Press:  31 January 2011

Masafumi Yamaguchi
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki-ken 319–11, Japan
Get access

Abstract

The reduction of dislocation density in heteroepitaxial III-V compound films on Si substrates has been studied using MOCVD (Metal-Organic Chemical Vapor Deposition). High-quality GaAs films on Si, with a dislocation density of about 106 cm−2, have been obtained by combining strained-layer superlattice insertion and thermal cycle annealing. Reduction of dislocation density in the III-V compounds on Si is discussed based on a simple model, where dislocation annihilation is assumed to be caused by dislocation movement under thermal and misfit stress. As a result of dislocation density reduction, high-efficiency GaAs-on-Si solar cells with total-area efficiencies of 18.3% (AM0) and 20% (AM1.5), and red and yellow emissions from InGaP-on-Si light-emitting diodes have been realized. Moreover, future prospects of heteroepitaxy of III-V compounds on Si are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987).Google Scholar
2Yamamoto, A. and Yamaguchi, M., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 285.Google Scholar
3Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).CrossRefGoogle Scholar
4Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y., and Sugo, M., Appl. Phys. Lett. 53, 2293 (1988).CrossRefGoogle Scholar
5Ishida, K., Akiyama, M., and Nishi, S., Jpn. J. Appl. Phys. 26, L1141 (1987).Google Scholar
6Al-Jassim, M. M., Nishioka, T., Itoh, Y., Yamamoto, A., and Yamaguchi, M., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 141.Google Scholar
7Kroemer, H., Liu, T. Y., and Petroff, P. M., J. Cryst. Growth 65, 96 (1989).CrossRefGoogle Scholar
8Choi, S. K., Mihara, M., and Ninomiya, T., Jpn. J. Appl. Phys. 16, 737 (1977).CrossRefGoogle Scholar
9Yamaguchi, M., Nishioka, T., and Sugo, M., Appl. Phys. Lett. 54, 24 (1989).CrossRefGoogle Scholar
10Fischer, R., Neumann, D., Zabel, H., Morkoç, H., Choi, C., and Otsuka, N., Appl. Phys. Lett. 48, 1223 (1986).CrossRefGoogle Scholar
11Feng, Z. C. and Liu, H. D., J. Appl. Phys. 54, 83 (1983).CrossRefGoogle Scholar
12Yonenaga, I. and Sumino, K., J. Appl. Phys. 62, 1212 (1987).CrossRefGoogle Scholar
13Yacobi, B. G., Zemon, S., and Jagannath, C., J. Cryst. Growth 95, 240 (1989).CrossRefGoogle Scholar
14Suhir, E., J. Appl. Mech. 53, 657 (1986).CrossRefGoogle Scholar
15Tachikawa, M., Mori, H., and Yamaguchi, M. (unpublished research).Google Scholar
16Yamaguchi, M. and Amano, C., J. Appl. Phys. 58, 3601 (1985).CrossRefGoogle Scholar
17Kadota, Y., Yamaguchi, M., and Ohmachi, Y., Proc. of 4th Int. Conf. on Photovoltaic Science and Engineering (The Inst. of Radio Electronics and Engineers Australia, Edgecliff, 1989), p. 873.Google Scholar
18Kondo, S., Nagai, H., Itoh, Y., and Yamaguchi, M., Appl. Phys. Lett. 55, 1981 (1989).CrossRefGoogle Scholar
19Sugo, M. and Yamaguchi, M., Appl. Phys. Lett. 54, 1754 (1989).CrossRefGoogle Scholar