Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T16:37:07.684Z Has data issue: false hasContentIssue false

Formation of maghemite nanoparticles in bismuth telluride materials containing iron

Published online by Cambridge University Press:  31 January 2011

R. Douglas
Affiliation:
Department of Physics and Astronomy, Howard University, Washington, District of Columbia 20059
C. Viragh
Affiliation:
Vitreous State Laboratory, The Catholic University of America, Washington, District of Columbia 20064
M.A. Adel-Hadadi
Affiliation:
Department of Chemistry, The Catholic University of America, Washington, District of Columbia 20064
K. Gaskell
Affiliation:
Department of Chemistry, University of Maryland–College Park, College Park, Maryland 20742
A. Barkatt
Affiliation:
Department of Chemistry, The Catholic University of America, Washington, District of Columbia 20064
Get access

Abstract

Bismuth telluride (Bi2Te3) systems containing 2%, 4%, and 8% of iron were prepared using a low temperature wet chemical method. Iron oxide nanoparticles were formed when the samples were heated in hydrogen at 250 °C for at least six hours. The samples were characterized by x-ray diffraction, magnetization, magnetic susceptibility, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and wet chemical analysis measurements. The nanoparticles of iron oxide were identified as γ-Fe2O3 with a particle size of ˜5 nm.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ritter, J.J.A novel synthesis of polycrystalline bismuth telluride. Inorg. Chem. 33, 6419 (1994)CrossRefGoogle Scholar
2.Zhang, H.T., Luo, X.G., Wang, C.H., Xiong, Y.M., Li, S.Y., Chen, X.H.Characterization of nanocrystalline bismuth telluride Bi2Te3 synthesized by a hydrothermal method. J. Cryst. Growth 265, 558 (2004)CrossRefGoogle Scholar
3.Chen, Y.L., Analytis, J.G., Chu, J-H., Liu, Z.K., Mo, S-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z-X.Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009)CrossRefGoogle ScholarPubMed
4.Dudkin, L.D., Petrova, L.I., Sokolova, V.M.Physicochemical processes at the Bi2Te2.4Se0.6/Fe contact. Inorg. Mater. 35, 676 (1999)Google Scholar
5.Kulbachinskii, V.A., Kaminskii, A.Y., Kindo, K., Narumi, Y., Suga, K., Lostak, P., Svanda, P.Ferromagnetism in new diluted magnetic semiconductor Bi2–xFexTe3. Physica B 311, 292 (2002)Google Scholar
6.Min, W., Lee, C., Park, Y., Park, I.Fabrication and thermoelectric properties of p-type Bi1Sb4Te7.5 alloy doped with Fe3O4. Mater. Sci. Forum 510–511, 1086 (2006)CrossRefGoogle Scholar
7.Thorpe, A.N., Senftle, F.E., Grant, J.R.Magnetic study of magnetite in the Tagish Lake meteorite. Meteorit. Planet. Sci. 37, 763 (2002)CrossRefGoogle Scholar
8.Thorpe, A.N., Senfle, F.E., Holt, M., Grant, J., Lowe, W., Anderson, H., Williams, E., Monkres, C.L., Barkatt, A.Magnetization, micro-x-ray fluorescence, and transmission electron microscopy studies of low concentrations of nanoscale Fe3O4 particles in epoxy resin. J. Mater. Res. 15, 2488 (2000)CrossRefGoogle Scholar
9.Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., Kim, J.D.Synthesis and characterization of superparamagnetic nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater. 282, 147 (2004)Google Scholar
10.Zhou, W., Tang, K., Zeng, S., Qi, Y.Room temperature synthesis of rod-like FeC2O4·2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnology 19, 065602 (2008)CrossRefGoogle Scholar
11.Goya, G.F., Berquo, T.S., Fonseca, F.C.Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520 (2003)CrossRefGoogle Scholar
12.Gao, Y., Chambers, S.A.Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films by oxygen-plasma-assisted molecular-beam epitaxy. J. Cryst. Growth 174, 446 (1987)CrossRefGoogle Scholar
13.Coey, J.M.D.Magnetic properties of iron in soil iron oxides and clay mineralsIron in Soils and Clay Minerals edited by J.W. Stucky, B.A. Goodman, and U. Schwertmann (D. Reidel Publishing Company, Boston, MA 1988)397466CrossRefGoogle Scholar
14.Soffel, H.Paleomagnetism and Archaeomagnetism (Springer, Berlin 1991)Google Scholar
15.Graham, M.J., Channing, D.A., Swallow, G.A., Jones, R.D.A Mössbauer study of the reduction of hematite in hydrogen at 535 °C. J. Mater. Sci. 10, 1175 (1975)CrossRefGoogle Scholar
16.Itoh, H., Sugimoto, T.Synthesis of monodispersed magnetic particles by the sol-gel method and their magnetic properties. Stud. Surf. Sci. Catal. 132, 251 (2001)CrossRefGoogle Scholar
17.Baudisch, O., Albrecht, W.H.γ-ferric oxide hydrate. J. Am. Chem. Soc. 54, 943 (1932)CrossRefGoogle Scholar
18.Cornell, R.M., Schwertmann, U.The Iron Oxides 2nd ed. (Wiley-VCH, Weinheim, Germany 2003)CrossRefGoogle Scholar
19.Girardet, J-L., Lawrence, J.J.A crystallographic study of the inorganic core of the ferritin macromolecule. Bull. Soc. Fr. Mineral. Cristallogr. 91, 440 (1968)Google Scholar
20.Eggleton, R.A., Fitzpatrick, R.W.New data and a revised structural model for ferrihydrite. Clays Clay Miner. 36, 111 (1988)CrossRefGoogle Scholar
21.Mazzetti, L., Thistlewaite, P.J.Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J. Raman Spectrosc. 33, 104 (2002)Google Scholar
22.Barrón, V., Torrent, J.Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim. Cosmochim. Acta 66, 2801 (2002)CrossRefGoogle Scholar
23.Barrón, V., Torrent, J., de Grave, E.Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite. Am. Mineral. 88, 1679 (2003)CrossRefGoogle Scholar
24.Liu, Q., Barrón, V., Torrent, J., Eeckhout, S.G., Deng, C.Magnetism of intermediate hydromagnetite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J. Geophys. Res. B: Solid Earth 113, (1) B01103/1 (2008)Google Scholar
25.Wolska, E., Szajda, W., Piszora, P.Effect of the anionic sublattice hydroxylation on the goethite → maghemite transformation in the AlxFe1–xOOH system. Mater. Lett. 21, 191 (1994)CrossRefGoogle Scholar
26.Tronc, E., Jolivet, J.P.Surface effects on magnetically coupled iron oxide (“γ-Fe2O3”) colloids. Hyperfine Interact. 28, 525 (1986)Google Scholar
27.Sidhu, P.S.Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner. 36, 31 (1988)CrossRefGoogle Scholar