Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T17:10:31.766Z Has data issue: false hasContentIssue false

Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation

Published online by Cambridge University Press:  31 January 2011

Jina Choi
Affiliation:
W.M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125
Hyunwoong Park
Affiliation:
School of Physics and Energy Science, Kyungpook National University, Daegu 702-701, South Korea
Michael R. Hoffmann*
Affiliation:
W.M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125
*
a)Address all correspondence to this author. e-mail: mrh@caltech.edu
Get access

Abstract

Titanium dioxide (TiO2) was doped with the combination of several metal ions including platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni). The doped TiO2 materials were synthesized by standard sol-gel methods with doping levels of 0.1 to 0.5 at.%. The resulting materials were characterized by x-ray diffraction (XRD), BET surface-area measurement, scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (DRS). The visible light photocatalytic activity of the codoped samples was quantified by measuring the rate of the oxidation of iodide, the rate of degradation of methylene blue (MB), and the rate of oxidation of phenol in aqueous solutions at λ > 400 nm. 0.3 at.% Pt-Cr-TiO2 and 0.3 at.% Cr-V-TiO2 showed the highest visible light photocatalytic activity with respect to MB degradation and iodide oxidation, respectively. However, none of the codoped TiO2 samples were found to have enhanced photocatalytic activity for phenol degradation when compared to their single-doped TiO2 counterparts.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
2.Mrowetz, M., Balcerski, W., Colussi, A.J., Hoffman, M.R.Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108, 17269 (2004)CrossRefGoogle Scholar
3.Sauthier, G., Gyorgy, E., Figueras, A.Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition. J. Mater. Res. 23, 2340 (2008)CrossRefGoogle Scholar
4.Umebayashi, T., Yamaki, T., Tanaka, S., Asai, K.Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003)CrossRefGoogle Scholar
5.Su, W.Y., Zhang, Y.F., Li, Z.H., Wu, L., Wang, X.X., Li, J.Q., Fu, X.Z.Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24, 3422 (2008)CrossRefGoogle ScholarPubMed
6.Liu, G., Chen, Z.G., Dong, C.L., Zhao, Y.N., Li, F., Lu, G.Q., Cheng, H.M.Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework. J. Phys. Chem. B 110, 20823 (2006)CrossRefGoogle ScholarPubMed
7.Hong, X.T., Wang, Z.P., Cai, W.M., Lu, F., Zhang, J., Yang, Y.Z., Ma, N., Liu, Y.J.Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 17, 1548 (2005)CrossRefGoogle Scholar
8.Zhou, J.K., Lv, L., Yu, J.Q., Li, H.L., Guo, P.Z., Sun, H., Zhao, X.S.Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J. Phys. Chem. C 112, 5316 (2008)CrossRefGoogle Scholar
9.Zhang, X.W., Lei, L.C.One step preparation of visible-light responsive Fe-TiO2 coating photocatalysts by MOCVD. Mater. Lett. 62, 895 (2008)CrossRefGoogle Scholar
10.Zhang, X.W., Zhou, M.H., Lei, L.C.Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427 (2006)CrossRefGoogle Scholar
11.Teoh, W.Y., Amal, R., Madler, L., Pratsinis, S.E.Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal. Today 120, 203 (2007)CrossRefGoogle Scholar
12.Iketani, K., Sun, R.D., Toki, M., Hirota, K., Yamaguchi, O.Sol-gel-derived VxTi1–xO2 films and their photocatalytic activities under visible light irradiation. Mater. Sci. Eng., B 108, 187 (2004)CrossRefGoogle Scholar
13.Klosek, S., Raftery, D.Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 105, 2815 (2001)CrossRefGoogle Scholar
14.Wu, J.C.S., Chen, C.H.A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol., A 163, 509 (2004)CrossRefGoogle Scholar
15.Borgarello, E., Kiwi, J., Gratzel, M., Pelizzetti, E., Visca, M.Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles. J. Am. Chem. Soc. 104, 2996 (1982)CrossRefGoogle Scholar
16.Anpo, M., Ichihashi, Y., Takeuchi, M., Yamashita, H.Design and development of unique titanium oxide photocatalysts capable of operating under visible light irradiation by an advanced metal ion-implantation method. Sci. Technol. Catal. 121, 305 (1999)Google Scholar
17.Kim, D.H., Lee, K.S., Kim, Y.S., Chung, Y.C., Kim, S.J.Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 89, 515 (2006)Google Scholar
18.Kim, S., Hwang, S.J., Choi, W.Y.Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B 109, 24260 (2005)CrossRefGoogle ScholarPubMed
19.Park, H., Choi, W., Hoffmann, M.R.Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 18, 2379 (2008)CrossRefGoogle Scholar
20.Bae, E., Choi, W.Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 37, 147 (2003)CrossRefGoogle ScholarPubMed
21.Choi, W.Y., Termin, A., Hoffmann, M.R.The role of metal-ion dopants in quantum-sized TiO2—Correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
22.Chen, J.H., Yao, M.S., Wang, X.L.Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. J. Nano. Res. 10, 163 (2008)CrossRefGoogle Scholar
23.Di Paola, A., Garcia-Lopez, E., Ikeda, S., Marci, G., Ohtani, B., Palmisano, L.Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today 75, 87 (2002)CrossRefGoogle Scholar
24.Srinivasan, S.S., Wade, J., Stefanakos, E.K., Goswami, Y.Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2. J. Alloys Compd. 424, 322 (2006)CrossRefGoogle Scholar
25.Ahmad, A., Shah, J.A., Buzby, S., Shah, S.I.Structural effects of codoping of Nb and Sc in titanium dioxide nanoparticles. Eur. J. Inorg. Chem. 948 (2008)CrossRefGoogle Scholar
26.Kato, H., Kudo, A.Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029 (2002)CrossRefGoogle Scholar
27.Niishiro, R., Kato, H., Kudo, A.Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys. 7, 2241 (2005)CrossRefGoogle ScholarPubMed
28.Niishiro, R., Konta, R., Kato, H., Chun, W.J., Asakura, K., Kudo, A.Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation. J. Phys. Chem. C 111, 17420 (2007)CrossRefGoogle Scholar
29.Huang, D.E., Liao, S.J., Quan, S.Q., Liu, L., He, Z.J., Wan, J.B., Zhou, W.B.Preparation and characterization of anatase N-F-codoped TiO2 sol and its photocatalytic degradation for formaldehyde. J. Mater. Res. 22, 2389 (2007)CrossRefGoogle Scholar
30.Li, D., Haneda, H., Hishita, S., Ohashi, N.Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization. Chem. Mater. 17, 2588 (2005)CrossRefGoogle Scholar
31.Yu, J.G., Zhou, M.H., Cheng, B., Zhao, X.J.Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders. J. Mol. Catal. A: Chem. 246, 176 (2006)CrossRefGoogle Scholar
32.Liu, H.Y., Gao, L.(Sulfur,nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst. J. Am. Ceram. Soc. 87, 1582 (2004)CrossRefGoogle Scholar
33.Sakatani, Y., Ando, H., Okusako, K., Koike, H., Nunoshige, J., Takata, T., Kondo, J.N., Hara, M., Domen, K.Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Res. 19, 2100 (2004)CrossRefGoogle Scholar
34.Sakatani, Y., Nunoshige, J., Ando, H., Okusako, K., Koike, H., Takata, T., Kondo, J.N., Hara, M., Domen, K.Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chem. Lett. 32, 1156 (2003)CrossRefGoogle Scholar
35.Pan, C.C., Wu, J.C.S.Visible-light response Cr-doped TiO2–xNx photocatalysts. Mater. Chem. Phys. 100, 102 (2006)CrossRefGoogle Scholar
36.Kim, S., Lee, S-K.Visible light-induced photocatalytic oxidation of 4-chlorophenol and dichloroacetate in intrided Pt-TiO2 aqueous suspensions. J. Photochem. Photobiol., A 203, 145 (2009)CrossRefGoogle Scholar
37.Zhao, Z.Y., Liu, Q.J.Designed highly effective photocatalyst of anatase TiO2 codoped with nitrogen and vanadium under visible-light irradiation using first-principles. Catal. Lett. 124, 111 (2008)CrossRefGoogle Scholar
38.Wang, Y., Meng, Y.L., Ding, H.M., Shan, Y.K., Zhao, X., Tang, X.Z.A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J. Phys. Chem. C 112, 6620 (2008)CrossRefGoogle Scholar
39.He, Z.Q., Xu, X., Song, S., Xie, L., Tu, J.J., Chen, J.M., Yan, B.A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine: An application in the degradation of oxalic acid. J. Phys. Chem. C 112, 16431 (2008)CrossRefGoogle Scholar
40.Shannon, R.D.Revised effective ionic-radii and systematic studies of interatomic distances in halides and charcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
41.Serpone, N., Lawless, D., Disdier, J., Herrmann, J.M.Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloid—Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10, 643 (1994)CrossRefGoogle Scholar
42.Umebayashi, T., Yamaki, T., Itoh, H., Asai, K.Analysis of electronic structures of 3D transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909 (2002)CrossRefGoogle Scholar
43.Kudo, A., Niishiro, R., Iwase, A., Kato, H.Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 339, 104 (2007)CrossRefGoogle Scholar
44.Kuznetsov, V.N., Serpone, N.Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B 110, 25203 (2006)CrossRefGoogle ScholarPubMed
45.Serpone, N.Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287 (2006)CrossRefGoogle ScholarPubMed
46.Lisachenko, A.A., Kuznetsov, V.N., Zakharov, M.N., Mikhailov, R.V.The interaction of O2, NO, and N2O with surface defects of dispersed titanium dioxide. Kinet. Catal. 45, 189 (2004)CrossRefGoogle Scholar
47.Kuznetsov, V.N., Krutitskaya, T.K.Nature of color centers in reduced titanium dioxide. Kinet. Catal. 37, 446 (1996)Google Scholar
48.Spurr, R.A., Myers, H.Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957)CrossRefGoogle Scholar