Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T06:00:39.869Z Has data issue: false hasContentIssue false

Observation of materials processes in liquids by electron microscopy

Published online by Cambridge University Press:  13 January 2015

Chong-Min Wang
Affiliation:
Pacific Northwest National Laboratory, USA; chongmin.wang@pnnl.gov
Hong-Gang Liao
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, USA; hgliao@lbl.gov
Frances M. Ross
Affiliation:
IBM T.J. Watson Research Center, USA; fmross@us.ibm.com
Get access

Abstract

Materials synthesis and the functioning of devices often involve liquid media. However, direct visualization of dynamic processes in liquids, especially with high spatial and temporal resolution, has been challenging. For solid materials, advances in aberration-corrected electron microscopy have made observations of atomic-level features a routine practice. Here, we discuss the extent to which one can take advantage of the resolution of modern electron microscopes to image phenomena occurring in liquids. We describe the fundamentals of two different experimental approaches that use closed and open liquid cells. We illustrate the capabilities of each approach by considering processes in batteries and nucleation and growth of nanoparticles from solution. Liquid-cell electron microscopy appears to be duly fulfilling its role and promise for in situ studies of nanoscale processes in liquids, revealing physical and chemical processes that are otherwise difficult to observe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392 (6678), 768 (1998).Google Scholar
Urban, K.W., Nat. Mater. 8, 260 (2009).Google Scholar
Muller, D.A., Nat. Mater. 8, 263 (2009).Google Scholar
Harutyunyan, A.R., Chen, G.G., Paronyan, T.M., Pigos, E.M., Kuznetsov, O.A., Hewaparakrama, K., Kim, S.M., Zakharov, D., Stach, E.A., Sumanasekera, G.U., Science 326 (5949), 116 (2009).Google Scholar
Kim, B.J., Tersoff, J., Kodambaka, S., Reuter, M.C., Stach, E.A., Ross, F.M., Science 322 (5904), 1070 (2008).Google Scholar
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Topsøe, H., Science 295 (5562), 2053 (2002).Google Scholar
Nolte, P., Stierle, A., Jin-Phillipp, N.Y., Kasper, N., Schulli, T.U., Dosch, H., Science 321, 1654 (2008).Google Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S., Science 335, 317 (2012).Google Scholar
Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., Warren, O.L., Nat. Mater. 5 (9), 697 (2006).Google Scholar
Zheng, H.M., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324 (5932), 1309 (2009).CrossRefGoogle Scholar
Liao, H.-G., Cui, L.K., Whitelam, S., Zheng, H.M., Science 336 (6084), 1011 (2012).Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D., Arslan, I., Nano Lett. 11 (7), 2809 (2011).Google Scholar
Zheng, H.M., Claridge, S.A., Minor, A.M., Alivisatos, A.P., Dahmen, U., Nano Lett. 9 (6), 2460 (2009).Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2 (8), 532 (2003).CrossRefGoogle Scholar
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B., Regan, B.C., ACS Nano 6 (7), 6308 (2012).Google Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., Nano Lett. 13 (12), 6106 (2013).Google Scholar
Chen, X., Noh, K.W., Wen, J.G., Dillon, S.J., Acta Mater. 60, 192 (2012).CrossRefGoogle Scholar
Mirsaidov, U., Ohl, C.-D., Matsudaira, P., Soft Matter 8, 7108 (2012).Google Scholar
White, E.R., Mecklenburg, M., Singer, S.B., Aloni, S., Regan, B.C., Appl. Phys. Express 4, 055201 (2011).Google Scholar
Li, D., Nielsen, M.H., Lee, J.R., Frandsen, C., Banfield, J.F., De Yoreo, J.J., Science 336 (6084), 1014 (2012).Google Scholar
Huang, T.W., Liu, S.Y., Chuang, Y.J., Hsieh, H.Y., Tsai, C.Y., Wu, W.J., Tsai, C.T., Mirsaidov, U., Matsudaira, P., Chang, C.S., Tseng, F.G., Chen, F.R., Soft Matter 9 (37), 8856 (2013).Google Scholar
Proetto, M.T., Rush, A.M., Chien, M.-P., Abellan Baeza, P., Patterson, J.P., Thompson, M.P., Olson, N.H., Moore, C.E., Rheingold, A.L., Andolina, C., Millstone, J., Howell, S.B., Browning, N.D., Evans, J.E., Gianneschi, N.C., J. Am. Chem. Soc. 136 (4), 1162 (2014).Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W., Proc. Natl. Acad. Sci. U.S.A. 106 (7), 2159 (2009).Google Scholar
Mirsaidov, U.M., Zheng, H.M., Casana, Y., Matsudaira, P., Biophys. J. 102 (4), L15 (2012).CrossRefGoogle Scholar
Evans, J.E., Jungjohann, K.L., Wong, P.C.K., Chiu, P.-L., Dutrow, G.H., Arslan, I., Browning, N.D., Micron 43 (11), 1085 (2012).CrossRefGoogle Scholar
de Jonge, N., Ross, F.M., Nat. Nano technol. 6 (11), 695 (2011).Google Scholar
Degen, K., Dukes, M., Tanner, J.R., Kelly, D.F., RSC Adv. 2, 2408 (2012).Google Scholar
Ring, E.A., de Jonge, N., Microsc. Microanal. 16, 622 (2010).Google Scholar
Tai, K., Liu, Y., Dillon, S.J., Microsc. Microanal. 20, 330 (2014).Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H.L., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.W., Zheng, H.M., Science 345 (6199), 916 (2014).Google Scholar
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Ultramicroscopy 127, 53 (2013).CrossRefGoogle Scholar
Jungjohann, K.L., Evans, J.E., Aguiar, J.A., Arslan, I., Browning, N.D., Microsc. Microanal. 18 (03), 621 (2012).Google Scholar
Egerton, R.F., Ultramicroscopy 127, 100 (2013).Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W., Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).Google Scholar
Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., ACS Nano 6 (10), 8599 (2012).CrossRefGoogle Scholar
Welch, D.A., Faller, R., Evans, J.E., Browning, N.D., Ultramicroscopy 135, 36 (2013).Google Scholar
Jungjohann, K.L., Evans, J.E., Aguiar, J.A., Arslan, I., Browning, N.D., Microsc. Microanal. 18 (3), 621 (2012).Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., Zandbergen, H.W., Ultramicroscopy 108, 993 (2008).Google Scholar
Grogan, J.M., Bau, H.H., J. Microelectromech. Syst. 19, 885 (2010).Google Scholar
Jensen, E., Burrows, A., Mølhave, K., Microsc. Microanal. 20, 445 (2014).Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336 (6077), 61 (2012).Google Scholar
Wang, C.M., Xu, W., Liu, J., Choi, D.W., Arey, B., Saraf, L.V., Zhang, J.G., Yang, Z.G., Thevuthasan, S., Baer, D.R., Salmon, N., J. Mater. Res. 25, 1541 (2010).Google Scholar
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., Li, J., Science 330 (6010), 1515 (2010).Google Scholar
Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.-H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C.-M., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y., Nano Lett. 11 (8), 3312 (2011).Google Scholar
Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., Huang, J.Y., Nano Lett. 11 (9), 3991 (2011).Google Scholar
Liu, Y., Hudak, N.S., Huber, D.L., Limmer, S.J., Sullivan, J.P., Huang, J.Y., Nano Lett. 11 (10), 4188 (2011).Google Scholar
Kushima, A., Liu, X.H., Zhu, G., Wang, Z.L., Huang, J.Y., Li, J., Nano Lett. 11, (11), 4535 (2011).Google Scholar
Liu, X.H., Wang, J.W., Liu, Y., Zheng, H., Kushima, A., Huang, S., Zhu, T., Mao, S.X., Li, J., Zhang, S., Lu, W., Tour, J.M., Huang, J.Y., Carbon 50 (10), 3836 (2012).Google Scholar
Liu, Y., Zheng, H., Liu, X.H., Huang, S., Zhu, T., Wang, J., Kushima, A., Hudak, N.S., Huang, X., Zhang, S., Mao, S.X., Qian, X., Li, J., Huang, J.Y., ACS Nano 5 (9), 7245 (2011).Google Scholar
Islam, M.M., Bredow, T., J. Phys. Chem. C 113, 672 (2009).CrossRefGoogle Scholar
Wang, F., Yu, H.-C., Chen, M.-H., Wu, L., Pereira, N., Thornton, K., Van der Ven, A., Zhu, Y., Amatucci, G.G., Graetz, J., Nat. Commun. 3, 1201 (2012).Google Scholar
Liao, H.-G., Zheng, H., J. Am. Chem. Soc. 135 (13), 5038 (2013).Google Scholar
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A., Sutter, E.A., Nano Lett. 13 (6), 2964 (2013).Google Scholar
Akhavan, O., Ghaderi, E., J. Phys. Chem. C 113 (47), 20214 (2009).Google Scholar
Panda, A.B., Glaspell, G., El-Shall, M.S., J. Am. Chem. Soc. 128 (9), 2790 (2006).Google Scholar
Liao, X.-H., Chen, N.-Y., Xu, S., Yang, S.-B., Zhu, J.-J., J. Cryst. Growth 252, (4), 593 (2003).Google Scholar
Li, Z., Peng, L., Fang, Y., Chen, Z., Pan, D., Wu, M., Radiat. Phys. Chem. 80, (12), 1333 (2011).Google Scholar
Zhou, F., Zhou, R., Hao, X., Wu, X., Rao, W., Chen, Y., Gao, D., Radiat. Phys. Chem. 77 (2), 169 (2008).Google Scholar
Divan, R., Ma, Q., Mancini, D., Keane, D., Rom. J. Inf. Sci. Technol. 11 (1), 71 (2008).Google Scholar
Rojas, J., Castano, C., Radiat. Phys. Chem. 81 (1), 16 (2012).CrossRefGoogle Scholar
Mishra, Y., Avasthi, D., Kulriya, P., Singh, F., Kabiraj, D., Tripathi, A., Pivin, J., Bayer, I., Biswas, A., Appl. Phys. Lett. 90 (7), 073110 (2007).Google Scholar
Xin, H.L., Zheng, H., Nano Lett. 12 (3), 1470 (2012).Google Scholar
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).CrossRefGoogle Scholar
Radisic, A., Ross, F.M., Searson, P.C., J. Phys. Chem. B 110, 7862 (2006).Google Scholar
Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).Google Scholar
den Heijer, M., Shao, I., Radisic, A., Reuter, M.C., Ross, F.M., APL Mater. 2, 022101 (2014).CrossRefGoogle Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., J. Indian Inst. Sci. 92, 295 (2012).Google Scholar
Holtz, M.E., Yu, Y., Gunceler, D., Gao, J., Sundararaman, R., Schwarz, K.A., Arias, T.S.A., Abruña, H.C.D., Muller, D.A., Nano Lett. 14, 1453 (2014).Google Scholar
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D., Unocic, R.R., Chem. Commun. 50, 2104 (2014).Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H.L., Chu, Y.-H., Zheng, H., Nano Lett. 14, 1745 (2014).Google Scholar
Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S. II, Gardiner, D.S., Damiano, J., Nackashi, D.P., Microsc. Microanal. 20, 452 (2014).Google Scholar
Morgan, D., Van der Ven, A., Ceder, G., Electrochem. Solid-State Lett. 7 (2), A30A32 (2004).CrossRefGoogle Scholar
Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.M., Masquelierk, C., Nat. Mater. 7 (9), 741 (2008).CrossRefGoogle Scholar
Malik, R., Zhou, F., Ceder, G., Nat. Mater. 10 (8), 587 (2011).Google Scholar
Zhu, Y., Wang, J.W., Liu, Y., Liu, X., Kushima, A., Liu, Y., Xu, Y., Mao, S.X., Li, J., Wang, C., Huang, J.Y., Adv. Mater. 25, 5461 (2013).Google Scholar
Kang Xu, K., von Cresce, A., Lee, U., Langmuir 26 (13), 11538 (2010).Google Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., Nano Lett. 14, 359 (2014).Google Scholar
Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., Delcourt, M.O., New J. Chem. 22 (11), 1239 (1998).Google Scholar
Belloni, J., Catal. Today 113 (34), 141 (2006).Google Scholar
Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., Zhang, J.-G., Wang, C.-M., Evans, J.E., Browning, N.D., Nano Lett. 14, 1293 (2014).Google Scholar