Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T11:53:25.624Z Has data issue: false hasContentIssue false

Materials challenges in rechargeable lithium-air batteries

Published online by Cambridge University Press:  09 May 2014

D.G. Kwabi
Affiliation:
Massachusetts Institute of Technology, USA; dkwabi@mit.edu
N. Ortiz-Vitoriano
Affiliation:
Massachusetts Institute of Technology, USA; nagore@mit.edu
S.A. Freunberger
Affiliation:
Graz University of Technology, Austria; freunberger@tugraz.at
Y. Chen
Affiliation:
University of St. Andrews, UK; yc21@st-andrews.ac.uk
N. Imanishi
Affiliation:
Mie University, Japan; imanishi@chem.mie-u.ac.jp
P.G. Bruce
Affiliation:
University of St. Andrews, UK; pgb1@st-andrews.ac.uk
Y. Shao-Horn
Affiliation:
Massachusetts Institute of Technology, USA; shaohorn@mit.edu
Get access

Abstract

Lithium-air batteries have received extraordinary attention recently owing to their theoretical gravimetric energies being considerably higher than those of Li-ion batteries. There are, however, significant challenges to practical implementation, including low energy efficiency, cycle life, and power capability. These are due primarily to the lack of fundamental understanding of oxygen reduction and evolution reaction kinetics and parasitic reactions between oxygen redox intermediate species and nominally inactive battery components such as carbon in the oxygen electrode and electrolytes. In this article, we discuss recent advances in the mechanistic understanding of oxygen redox reactions in nonaqueous electrolytes and the search for electrolytes and electrode materials that are chemically stable in the oxygen electrode. In addition, methods to protect lithium metal against corrosion by water and dendrite formation in aqueous lithium-air batteries are discussed. Further materials innovations lie at the heart of research and development efforts that are needed to enable the development of lithium-oxygen batteries with enhanced round-trip efficiency and cycle life.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, Y.-C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., Shao-Horn, Y., Energy Environ. Sci. 6, 750 (2013).Google Scholar
Lee, J.-S., Tai Kim, S., Cao, R., Choi, N.-S., Liu, M., Lee, K.T., Cho, J., Adv. Energy Mater. 1, 34 (2011).Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Nat. Mater. 11, 19 (2012).CrossRefGoogle Scholar
Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., J. Electrochem. Soc. 159, R1 (2012).CrossRefGoogle Scholar
Bruce, P.G., Hardwick, L.J., Abraham, K.M., MRS Bull. 36, 506 (2011).Google Scholar
Shao, Y., Park, S., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J., ACS Catal. 2, 844 (2012).CrossRefGoogle Scholar
Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., Science 337, 563 (2012).Google Scholar
Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., Shao-Horn, Y., J. Phys. Chem. C 116, 20800 (2012).CrossRefGoogle Scholar
Oh, S.H., Nazar, L.F., Adv. Energy Mater. 2, 903 (2012).Google Scholar
Wang, Z.-L., Xu, D., Xu, J.-J., Zhang, L.-L., Zhang, X.-B., Adv. Funct. Mater. 22, 3699 (2012).CrossRefGoogle Scholar
Hasegawa, S., Imanishi, N., Zhang, T., Xie, J., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 189, 371 (2009).Google Scholar
Imanishi, N., Hasegawa, S., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 185, 1392 (2008).CrossRefGoogle Scholar
McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C., J. Phys. Chem. Lett. 2, 1161 (2011).Google Scholar
Ikeda, H., Hoch, R., Hausslein, R., US Patent 05879836 (1999).Google Scholar
Xia, H., Lu, L., Ceder, G., J. Power Sources 159, 1422 (2006).Google Scholar
Zhu, Y., Wang, C., J. Phys. Chem. C 114, 2830 (2010).Google Scholar
Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G., Science 311, 977 (2006).Google Scholar
Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., Tarascon, J.-M., ChemSusChem 1, 348 (2008).Google Scholar
Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., Shao-Horn, Y., Energy Environ. Sci. 6, 2518 (2013).Google Scholar
Mitchell, R.R., Gallant, B.M., Thompson, C.V., Shao-Horn, Y., Energy Environ. Sci. 4, 2952 (2011).CrossRefGoogle Scholar
Black, R., Oh, S.H., Lee, J., Yim, T., Adams, B., Nazar, L.F., J. Am. Chem. Soc. 134, 2902 (2012).Google Scholar
Xu, D., Wang, Z., Xu, J., Zhang, L., Zhang, X., Chem. Commun. 48, 6948 (2012).CrossRefGoogle Scholar
Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., Thompson, C.V., J. Phys. Chem. Lett. 4, 1060 (2013).Google Scholar
Hummelshøj, J.S., Luntz, A.C., Nørskov, J.K., J. Chem. Phys. 138, 034703 (2013).CrossRefGoogle Scholar
Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Bardé, F., Novák, P., Graham, D., Tarascon, J.-M., Bruce, P.G., Angew. Chem. Int. Ed. Engl. 50, 6351 (2011).Google Scholar
Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., Nazar, L.F., Energy Environ. Sci. 6, 1772 (2013).Google Scholar
Zhai, D., Wang, H.-H., Yang, J., Lau, K.C., Li, K., Amine, K., Curtiss, L.A., J. Am. Chem. Soc. 135, 15364 (2013).Google Scholar
Zhong, L., Mitchell, R.R., Liu, Y., Gallant, B.M., Thompson, C.V., Huang, J.Y., Mao, S.X., Shao-Horn, Y., Nano Lett. 13, 2209 (2013).Google Scholar
McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshøj, J.S., Nørskov, J.K., Luntz, A.C., J. Phys. Chem. Lett. 3, 997 (2012).CrossRefGoogle Scholar
Itkis, D.M., Semenenko, D.A., Kataev, E.Y., Belova, A.I., Neudachina, V.S., Sirotina, A.P., Hävecker, M., Teschner, D., Knop-Gericke, A., Dudin, P., Barinov, A., Goodilin, E.A., Shao-Horn, Y., Yashina, L.V., Nano Lett. 13, 4697 (2013).Google Scholar
McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., Krupp, L.E., J. Phys. Chem. Lett. 4, 2989 (2013).Google Scholar
Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Bruce, P.G., J. Am. Chem. Soc. 135, 494 (2012).Google Scholar
Lu, Y.-C., Crumlin, E.J., Veith, G.M., Harding, J.R., Mutoro, E., Baggetto, L., Dudney, N.J., Liu, Z., Shao-Horn, Y., Sci. Rep. 2, 715 (2012).Google Scholar
Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Chen, Y., Liu, Z., Bruce, P.G., Nat. Mater. 12, 1050 (2013).Google Scholar
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S., Iba, H., Electrochemistry 78, 403 (2010).Google Scholar
Xu, W., Viswanathan, V.V., Wang, D., Towne, S.A., Xiao, J., Nie, Z., Hu, D., Zhang, J.-G., J. Power Sources 196, 3894 (2011).Google Scholar
Bryantsev, V.S., Uddin, J., Giordani, V., Walker, W., Addison, D., Chase, G.V., J. Electrochem. Soc. 160, A160 (2012).CrossRefGoogle Scholar
Sawyer, D.T., Roberts, J.L. Jr., J. Electroanal. Chem. 12, 90 (1966).Google Scholar
Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 113, 20127 (2009).Google Scholar
Younesi, R., Hahlin, M., Björefors, F., Johansson, P., Edström, K., Chem. Mater. 25, 77 (2012).Google Scholar
Herranz, J., Garsuch, A., Gasteiger, H.A., J. Phys. Chem. C 116, 19084 (2012).Google Scholar
Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D., J. Am. Chem. Soc. 135, 2076 (2013).Google Scholar
Mizuno, F., Takechi, K., Higashi, S., Shiga, T., Shiotsuki, T., Takazawa, N., Sakurabayashi, Y., Okazaki, S., Nitta, I., Kodama, T., Nakamoto, H., Nishikoori, H., Nakanishi, S., Kotani, Y., Iba, H., J. Power Sources 228, 47 (2013).CrossRefGoogle Scholar
Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F., Bruce, P.G., Angew. Chem. Int. Ed. Engl. 50, 8609 (2011).Google Scholar
Laoire, C., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Electrochem. Soc. 158, A302 (2011).CrossRefGoogle Scholar
Leskes, M., Drewett, N.E., Hardwick, L.J., Bruce, P.G., Goward, G.R., Grey, C.P., Angew. Chem. Int. Ed. Engl. 51, 8560 (2012).CrossRefGoogle Scholar
Chen, Y., Freunberger, S.A., Peng, Z., Bardé, F., Bruce, P.G., J. Am. Chem. Soc. 134, 7952 (2012).Google Scholar
Mizuno, F., Nakanishi, S., Shirasawa, A., Takechi, K., Shiga, T., Nishikoori, H., Iba, H., Electrochemistry 79, 876 (2011).Google Scholar
Takechi, K., Higashi, S., Mizuno, F., Nishikoori, H., Iba, H., Shiga, T., ECS Electrochem. Lett. 1, A27 (2012).Google Scholar
Monaco, S., Arangio, A.M., Soavi, F., Mastragostino, M., Paillard, E., Passerini, S., Electrochim. Acta 83, 94 (2012).CrossRefGoogle Scholar
Allen, C.J., Hwang, J., Kautz, R.A., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Phys. Chem. C 116, 20755 (2012).Google Scholar
Schwenke, K.U., Meini, S., Wu, X., Gasteiger, H.A., Piana, M., Phys. Chem. Chem. Phys. 15, 11830 (2013).Google Scholar
Aurbach, D., Daroux, M., Faguy, P., Yeager, E., J. Electroanal. Chem. Interfacial Electrochem. 297, 225 (1991).Google Scholar
Bryantsev, V.S., Giordani, V., Walker, W., Blanco, M., Zecevic, S., Sasaki, K., Uddin, J., Addison, D., Chase, G.V., J. Phys. Chem. A 115, 12399 (2011).CrossRefGoogle Scholar
Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 114, 9178 (2010).Google Scholar
Allen, C.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Phys. Chem. Lett. 2, 2420 (2011).Google Scholar
Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B., Nat. Chem. 4, 579 (2012).Google Scholar
Lu, Y.-C., Gasteiger, H.A., Shao-Horn, Y., J. Am. Chem. Soc. 133 (47), 19048 (2011).Google Scholar
Oh, S.H., Black, R., Pomerantseva, E., Lee, J.-H., Nazar, L.F., Nat. Chem. 4, 1004 (2012).Google Scholar
Younesi, R., Hahlin, M., Treskow, M., Scheers, J., Johansson, P., Edstrom, K., J. Phys. Chem. C 116, 18597 (2012).Google Scholar
Bryantsev, V.S., Faglioni, F., J. Phys. Chem. A 116, 7128 (2012).Google Scholar
Ryan, K.R., Trahey, L., Ingram, B.J., Burrell, A.K., J. Phys. Chem. C 116, 19724 (2012).CrossRefGoogle Scholar
Clover, A.M., J. Am. Chem. Soc. 44, 1107 (1922).Google Scholar
Sawyer, D.T., Valentine, J.S., Acc. Chem. Res. 14, 393 (1981).Google Scholar
Peover, M.E., White, B.S., Electrochim. Acta 11, 1061 (1966).Google Scholar
Merritt, M.V, Sawyer, D.T., J. Org. Chem. 35, 2157 (1970).Google Scholar
Jang, Y.-I., Neudecker, B.J., Dudney, N.J., Electrochem. Solid-State Lett. 4, A74 (2001).Google Scholar
Levi, M.D., Aurbach, D., J. Phys. Chem. B 101, 4630 (1997).Google Scholar
Visco, S., Katz, B., Chu, M.Y., De Jonghe, L., Eds., Symposium on Scalable Energy Storage: Beyond Lithium-Ion (IBM, Almaden Institute, San Jose, CA 2009).Google Scholar
Zhang, X.-W., Li, Y., Khan, S.A., Fedkiw, P.S., J. Electrochem. Soc. 151, A1257 (2004).Google Scholar
Rao, B.M.L., Francis, R.W., Christopher, H.A., J. Electrochem. Soc. 124, 1490 (1977).Google Scholar
Megahed, S., Scrosati, B., Electrochem. Soc. Interface 4, 34 (1995).Google Scholar
Monroe, C., Newman, J., J. Electrochem. Soc. 152, A396 (2005).Google Scholar
Stevens, P., Toussaint, G., Caillon, G., Viaud, P., Vinatier, P., Cantau, C., Fichet, O., Sarrazin, C., Mallouki, M., ECS Trans. 28, 1 (2010).CrossRefGoogle Scholar
Capsoni, D., Bini, M., Ferrari, S., Quartarone, E., Mustarelli, P., J. Power Sources 220, 253 (2012).Google Scholar
Murugan, R., Thangadurai, V., Weppner, W., Angew. Chem. Int. Ed. Engl. 46, 7778 (2007).Google Scholar
Kumar, B., Kumar, J., Leese, R., Fellner, J.P., Rodrigues, S.J., Abraham, K.M., J. Electrochem. Soc. 157, A50 (2010).CrossRefGoogle Scholar
Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N., Lascaud, S., J. Power Sources 9798, 804 (2001).Google Scholar
Brissot, C., Rosso, M., Chazalviel, J.-N., Lascaud, S., J. Power Sources 8182, 925 (1999).CrossRefGoogle Scholar
Liu, S., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Yang, J., J. Electrochem. Soc. 157, A1092 (2010).CrossRefGoogle Scholar
Liu, S., Wang, H., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Yang, J., J. Power Sources 196, 7681 (2011).Google Scholar
Zhang, T., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Electrochem. Solid-State Lett. 14, A45 (2011).Google Scholar
Sannier, L., Bouchet, R., Rosso, M., Tarascon, J.-M., J. Power Sources 158, 564 (2006).Google Scholar
Xu, W., Xu, K., Viswanathan, V.V., Towne, S.A., Hardy, J.S., Xiao, J., Nie, Z., Hu, D., Wang, D., Zhang, J.-G., J. Power Sources 196, 9631 (2011).Google Scholar