Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T05:33:56.645Z Has data issue: false hasContentIssue false

Organic resistive nonvolatile memory materials

Published online by Cambridge University Press:  17 February 2012

Takhee Lee
Affiliation:
Department of Physics and Astronomy, Seoul National University, Korea; tlee@snu.ac.kr
Yong Chen
Affiliation:
University of California, Los Angeles, USA; yongchen@seas.ucla.edu
Get access

Abstract

Resistive memory devices based on organic materials that can be configured to two or more stable resistance states have been extensively explored as information storage media due to their advantages, which include simple device structures, low fabrication costs, and flexibility. Various organic-based materials such as small molecules, polymers, and composite materials have been observed to show bistability. This review provides a general summary about the materials, structures, characteristics, and mechanisms of organic resistive memory devices. Several critical strategies for device fabrication, performance enhancement, and integrated circuit architectures are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yang, Y., Ouyang, J., Ma, L., Tseng, R.J.H., Chu, C.W., Adv. Funct. Mat. 16, 1001 (2006).CrossRefGoogle Scholar
2.Scott, J.C., Bozano, L.D., Adv. Mater. 19, 1452 (2007).Google Scholar
3.Ling, Q.-D., Liaw, D.-J., Zhu, C., Chan, D. S.-H., Kang, E.-T., Neoh, K.-G., Prog. Polym. Sci. 33, 917 (2008).CrossRefGoogle Scholar
4.Ouyang, J., Chu, C.-W., Szmanda, C.R., Ma, L., Yang, Y., Nat. Mater. 3, 918 (2004).CrossRefGoogle Scholar
5.Mukherjee, B., Pal, A.J., Org. Electron. 7, 249 (2006).CrossRefGoogle Scholar
6.Lin, J., Ma, D., Org. Electron. 10, 275 (2009).CrossRefGoogle Scholar
7.Chu, C.W., Ouyang, J., Tseng, J.H., Yang, Y., Adv. Mater. 17, 1440 (2005).CrossRefGoogle Scholar
8.Lai, P.Y., Chen, J.S., Appl. Phys. Lett. 93, 153305 (2008).CrossRefGoogle Scholar
9.Cho, B.-O., Yasue, T., Yoon, H., Lee, M.-S., Yeo, I.-S., Chung, U.I., Moon, J.-T., Ryu, B.-I., IEEE Int. Electron Devices Meeting (2006); doi:10.1109/IEDM.2006.346729.Google Scholar
10.Liu, G., Ling, Q.-D., Kang, E.-T., Neoh, K.-G., Liaw, D.-J., Chang, F.-C., Zhu, C.-X., Chan, D.S.-H., J. Appl. Phys. 102, 024502 (2007).CrossRefGoogle Scholar
11.Liu, G., Ling, Q.-D., Teo, E.Y.H., Zhu, C.-X., Chan, D.S.-H., Neoh, K.-G., Kang, E.-T., ACS Nano 3, 1929 (2009).CrossRefGoogle Scholar
12.Bozano, L.D., Kean, B.W., Beinhoff, M., Carter, K.R., Rice, P.M., Scott, J.C., Adv. Funct. Mat. 15, 1933 (2005).CrossRefGoogle Scholar
13.Kim, T.-W., Oh, S.-H., Choi, H., Wang, G., Hwang, H., Kim, D.-Y., Lee, T., Appl. Phys. Lett. 92, 253308 (2008).CrossRefGoogle Scholar
14.Lin, H.-T., Pei, Z., Chan, Y.-J., IEEE Electron Device Lett. 28, 569 (2007).Google Scholar
15.Chen, J.-R., Lin, H.-T., Hwang, G.-W., Chan, Y.-J., Li, P.-W., Nanotechnology 20, 255706 (2009).CrossRefGoogle Scholar
16.Asadi, K., de Leeuw, D.M., de Boer, B., Blom, P.W.M., Nat. Mater. 7, 547 (2008).CrossRefGoogle Scholar
17.Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., Weiss, P.S., Science 292, 2303 (2001).CrossRefGoogle Scholar
18.Peng, G., Yuan-Wei, D., Xin, J., Yin-Xiang, L., Wei, X., IEEE Electron Device Lett. 28, 572 (2007).Google Scholar
19.Lau, C.N., Stewart, D.R., Williams, R.S., Bockrath, M., Nano Lett. 4, 569 (2004).CrossRefGoogle Scholar
20.Das, B.C., Pal, A.J., Org. Electron. 9, 39 (2008).CrossRefGoogle Scholar
21.Carchano, H., Lacoste, R., Segui, Y., Appl. Phys. Lett. 19, 414 (1971).CrossRefGoogle Scholar
22.Henisch, H.K., Smith, W.R., Appl. Phys. Lett. 24, 589 (1974).CrossRefGoogle Scholar
23.Lim, S.L., Ling, Q., Teo, E.Y.H., Zhu, C.X., Chan, D.S.H., Kang, E.T., Neoh, K.G., Chem. Mater. 19, 5148 (2007).CrossRefGoogle Scholar
24.Kim, T.-W., Oh, S.-H., Choi, H., Wang, G., Hwang, H., Kim, D.-Y., Lee, T., IEEE Electron Device Lett. 29, 852 (2008).CrossRefGoogle Scholar
25.Majumdar, H.S., Bandyopadhyay, A., Bolognesi, A., Pal, A.J., J. Appl. Phys. 91, 2433 (2002).CrossRefGoogle Scholar
26.Sadaoka, Y., Sakai, Y., J. Chem. Soc., Faraday Trans. 2 72, 1911 (1976).CrossRefGoogle Scholar
27.Kim, S.H., Yook, K.S., Jang, J., Lee, J.Y., Synth. Met. 158, 861 (2008).CrossRefGoogle Scholar
28.Laiho, A., Majumdar, H.S., Baral, J.K., Jansson, F., Osterbacka, R., Ikkala, O., Appl. Phys. Lett. 93, 203309 (2008).CrossRefGoogle Scholar
29.Li, F., Kim, T.W., Dong, W., Kim, Y.-H., Appl. Phys. Lett. 92, 011906 (2008).CrossRefGoogle Scholar
30.Li, F., Son, D.-I., Seo, S.-M., Cha, H.-M., Kim, H.-J., Kim, B.-J., Jung, J.H., Kim, T.W., Appl. Phys. Lett. 91, 122111 (2007).CrossRefGoogle Scholar
31.Simon, D.T., Griffo, M.S., DiPietro, R.A., Swanson, S.A., Carter, S.A., Appl. Phys. Lett. 89, 133510 (2006).CrossRefGoogle Scholar
32.Verbakel, F., Meskers, S.C.J., Janssen, R.A.J., Chem. Mater. 18, 2707 (2006).CrossRefGoogle Scholar
33.Song, Y., Ling, Q.D., Lim, S.L., Teo, E.Y.H., Tan, Y.P., Li, L., Kang, E.T., Chan, D.S.H., Zhu, C., IEEE Electron Device Lett. 28, 107 (2007).Google Scholar
34.Paul, S., Kanwal, A., Chhowalla, M., Nanotechnology 17, 145 (2006).CrossRefGoogle Scholar
35.Son, D.-I., Kim, J.-H., Park, D.-H., Choi, W.K., Li, F., Ham, J.H., Kim, T.W., Nanotechnology 19, 055204 (2008).CrossRefGoogle Scholar
36.Bandyopadhyay, A., Pal, A.J., Appl. Phys. Lett. 84, 999 (2004).CrossRefGoogle Scholar
37.Cho, B., Kim, T.-W., Choe, M., Wang, G., Song, S., Lee, T., Org. Electron. 10, 473 (2009).CrossRefGoogle Scholar
38.Cho, B., Kim, T.-W., Song, S., Ji, Y., Jo, M., Hwang, H., Jung, G.-Y., Lee, T., Adv. Mater. 22, 1228 (2010).CrossRefGoogle Scholar
39.Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., Lee, C.B., Seo, D.H., Cha, Y.K., Yoo, I.K., Kim, J.S., Park, B.H., Adv. Mater. 19, 3919 (2007).CrossRefGoogle Scholar
40.Lin, H.-T., Pei, Z., Chen, J.-R., Chan, Y.-J., IEEE Electron Device Lett. 30, 18 (2009).CrossRefGoogle Scholar
41.Baek, I.G., Kim, D.C., Lee, M.J., Kim, H.J., Yim, E.K., Lee, M.S., Lee, J.E., Ahn, S.E., Seo, S., Lee, J.H., Park, J.C., Cha, Y.K., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.I., Moon, J.T., Ryu, B.I., IEEE Int. Electron Devices Meeting (2005), doi:10.1109/IEDM.2005.1609462.Google Scholar
42.Nalwa, H.S., Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, New York, 1995).CrossRefGoogle Scholar
43.Dearnaley, G., Morgan, D.V., Stoneham, A.M., J. Non-Cryst. Solids 4, 593 (1970).CrossRefGoogle Scholar
44.Dearnaley, G., Stoneham, A.M., Morgan, D.V., Rep. Prog. Phys. 33, 1129 (1970).CrossRefGoogle Scholar
45.Pender, L.F., Fleming, R.J., J. Appl. Phys. 46, 3426 (1975).CrossRefGoogle Scholar
46.Segui, Y., Ai, B., Carchano, H., J. Appl. Phys. 47, 140 (1976).CrossRefGoogle Scholar
47.Hwang, W., Kao, K.C., J. Chem. Phys. 60, 3845 (1974).CrossRefGoogle Scholar
48.Joo, W.-J., Choi, T.-L., Lee, K.-H., Chung, Y., J. Phys. Chem. B 111, 7756 (2007).CrossRefGoogle Scholar
49.Sivaramakrishnan, S., Chia, P.-J., Yeo, Y.-C., Chua, L.-L., Ho, P.K.H., Nat. Mater. 6, 149 (2007).CrossRefGoogle Scholar
50.Carbone, A., Kotowska, B.K., Kotowski, D., Phys. Rev. Lett. 95, 236601 (2005).CrossRefGoogle Scholar
51.Mark, P., Helfrich, W., J. Appl. Phys. 33, 205 (1962).CrossRefGoogle Scholar
52.Das, S., Pal, A.J., Appl. Phys. Lett. 76, 1770 (2000).CrossRefGoogle Scholar
53.Simmons, J.G., Verderber, R.R., Proc. R. Soc. London, Ser. A 301, 77 (1967).Google Scholar
54.Reddy, V.S., Karak, S., Dhar, A., Appl. Phys. Lett. 94, 173304 (2009).CrossRefGoogle Scholar
55.Park, J.-G., Nam, W.-S., Seo, S.-H., Kim, Y.-G., Oh, Y.-H., Lee, G.-S., Paik, U.-G., Nano Lett. 9, 1713 (2009).CrossRefGoogle Scholar
56.Potember, R.S., Poehler, T.O., Cowan, D.O., Appl. Phys. Lett. 34, 405 (1979).CrossRefGoogle Scholar
57.Kamitsos, E.I., Tzinis, C.H., Risen, W.M., Solid State Commun. 42, 561 (1982).CrossRefGoogle Scholar
58.Kronemeijer, A.J., Akkerman, H.B., Kudernac, T., Wees, B.J.V., Feringa, B.L., Blom, P.W.M., Boer, B.D., Adv. Mater. 20, 1467 (2008).CrossRefGoogle Scholar
59.Teo, E.Y.H., Ling, Q.D., Song, Y., Tan, Y.P., Wang, W., Kang, E.T., Chan, D.S.H., Zhu, C., Org. Electron. 7, 173 (2006).CrossRefGoogle Scholar
60.Smits, J.H.A., Meskers, S.C.J., Janssen, R.A.J., Marsman, A.W., de Leeuw, D.M., Adv. Mater. 17, 1169 (2005).CrossRefGoogle Scholar
61.Kim, T.-W., Lee, K., Oh, S.-H., Wang, G., Kim, D.-Y., Jung, G.-Y., Lee, T., Nanotechnology 19, 405201 (2008).CrossRefGoogle Scholar
62.Kim, T.-W., Choi, H., Oh, S.-H., Jo, M., Wang, G., Cho, B., Kim, D.-Y., Hwang, H., Lee, T., Nanotechnology 20, 025201 (2009).CrossRefGoogle Scholar
63.Kim, T.-W., Choi, H., Oh, S.-H., Wang, G., Kim, D.-Y., Hwang, H., Lee, T., Adv. Mater. 21, 2497 (2009).CrossRefGoogle Scholar
64.Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., Sugiyama, Y., Appl. Phys. Lett. 93, 033506 (2008).CrossRefGoogle Scholar
65.Scott, J.C., Science 304, 62 (2004).CrossRefGoogle ScholarPubMed
66.International Technology Roadmap For Semiconductors (2007). Emerging research devices. (Semiconductor Industry Association, International Sematech, Austin, TX 2007).Google Scholar
67.Möller, S., Perlov, C., Jackson, W., Taussig, C., Forrest, S.R., Nature 426, 166 (2003).CrossRefGoogle Scholar
68.Teo, E.Y.H., Zhang, C., Lim, S.L., Kang, E.-T., Chan, D.S.H., Zhu, C., IEEE Electron Device Lett. 30, 487 (2009).CrossRefGoogle Scholar
69.Ahn, S.-E., Kang, B.S., Kim, K.H., Lee, M.-J., Lee, C.B., , S.G., Kim, C.J., Park, Y., IEEE Electron Device Lett. 30, 550 (2009).Google Scholar
70.Lee, M.-J., Kim, S.I., Lee, C.B., Yin, H., Ahn, S.-E., Kang, B.S., Kim, K.H., Park, J.C., Kim, C.J., Song, I., Kim, S.W., Stefanovich, G., Lee, J.H., Chung, S.J., Kim, Y.H., Park, Y., Adv. Funct. Mater. 19, 1587 (2009).Google Scholar
71.Asadi, K., Li, M., Stingelin, N., Blom, P.W.M., de Leeuw, D.M., Appl. Phys. Lett. 97, 193308 (2010).CrossRefGoogle Scholar
72.Jeong, H.Y., Kim, Y.I., Lee, J.Y., Choi, S.-Y., Nanotechnology 21, 115203 (2010).CrossRefGoogle Scholar
73.Song, S., Cho, B., Kim, T.-W., Ji, Y., Jo, M., Wang, G., Choe, M., Kahng, Y.H., Hwang, H., Lee, T., Adv. Mater. 22, 5048 (2010).CrossRefGoogle Scholar
74.Kwan, W.L., Tseng, R.J., Wu, W., Pei, Q., Yang, Y., IEEE Int. Electron Devices Meeting (2007); doi:10.1109/IEDM.2007.4418911.Google Scholar
75.Kwan, W.L., Tseng, R.J., Yang, Y., Philos. Trans. R. Soc., A 367, 4159 (2009).CrossRefGoogle Scholar
76.Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R., Solid-State Electron. 53, 1287 (2009).CrossRefGoogle Scholar
77.Kim, J.J., Cho, B., Kim, K.S., Lee, T., Jung, G.Y., Adv. Mater. 23, 2104 (2011).CrossRefGoogle Scholar
78.Li, L., Ling, Q.-D., Lim, S.-L., Tan, Y.-P., Zhu, C., Chan, D.S.H., Kang, E.-T., Neoh, K.-G., Org. Electron. 8, 401 (2007).CrossRefGoogle Scholar
79.Kim, S., Choi, Y.-K., Appl. Phys. Lett. 92, 223508 (2008).CrossRefGoogle Scholar
80.Lee, S., Kim, H., Yun, D.-J., Rhee, S.-W., Yong, K., Appl. Phys. Lett. 95, 262113 (2009).Google Scholar
81.Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.-E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.-Y., Nano Lett. 10, 4381 (2010).CrossRefGoogle Scholar
82.Ji, Y., Cho, B., Song, S., Kim, T.-W., Choe, M., Kahng, Y.H., Lee, T., Adv. Mater. 22, 3071 (2010).CrossRefGoogle Scholar
83.Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T., Science 326, 1516 (2009).CrossRefGoogle Scholar
84.Ji, Y., Lee, S., Cho, B., Song, S., Lee, T., ACS Nano 5, 5995 (2011).CrossRefGoogle Scholar
85.Lian, K., Li, R., Wang, H., Zhang, J., Gamota, D., Mater. Sci. Eng., B 167, 12 (2010).CrossRefGoogle Scholar
86.Heeger, A.J., Angew. Chem. Int. Ed. 40, 2591 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
87.MacDiarmid, A.G., Angew. Chem. Int. Ed. 40, 2581 (2001).3.0.CO;2-2>CrossRefGoogle Scholar
88.Waser, R., Aono, M., Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
89.Ling, Q.D., Lim, S.L., Song, Y., Zhu, C.X., Chan, D.S.H., Kang, E.T., Neoh, K.G., Langmuir 23, 312 (2007).CrossRefGoogle Scholar
90.Xie, L.-H., Ling, Q.-D., Hou, X.-Y., Huang, W., J. Am. Chem. Soc. 130, 2120 (2008).CrossRefGoogle Scholar