Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:47:09.267Z Has data issue: false hasContentIssue false

Supramolecular Approaches to Nanoscale Dielectric Foams for Advanced Microelectronic Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The increasing demands of miniaturization in the microelectronics industry has forced continual improvement in the materials that are used in the fabrication of semiconductor devices. Advances in photoresists for microlithographic applications have reduced the feature size to 0.25 µm and below, and this drive to eversmaller features, coupled with the introduction of copper, has placed increasing demands on the dielectric material. Materials with lower dielectric constants (depicted in dark gray in Figure 1) are therefore required to more efficiently insulate these submicron features, such as the copper interconnect lines used to connect the transistors and memory cells in these advanced multilevel devices (Figure 1). This allows the minimization of crosstalk, signal delays, and power consumption. While vapor-deposited silicon dioxide and other derivatives are currently being employed, they suffer from unacceptably high dielectric constants (ε > 3.6) and are unacceptable for future generations of microelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors: Technology Needs, 1997 ed. (Semiconductor Industry Association, Washington, DC) p. 101.Google Scholar
2. Economist 77 (1998) p. 91.Google Scholar
3. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L., J. Am. Chem. Soc. 114 (1992) p. 10834; E. Kramer, S. Forster, C. Goltner, and M. Antonietti, Langmuir 14 (1998) p. 2027.CrossRefGoogle Scholar
4. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science 279 (1998) p. 548.CrossRefGoogle Scholar
5. Velev, O.D., Tessier, P.M., Lenhoff, A.M., and Kaler, E.W., Nature 401 (1999) p. 548.CrossRefGoogle Scholar
6. Hedrick, J.L., Labadie, J., Russell, T.P., Hofer, D., and Wakharker, V., Polymer 34 (1993) p. 4717; J.L. Hedrick, K.R. Carter, J. Labadie, R.D. Miller, W. Volksen, C.J. Hawker, D.Y. Yoon, T.P. Russell, J.E. McGrath, and R.M. Briber, Adv. Polym. Sci. 141 (1999) p. 1.CrossRefGoogle Scholar
7. Novak, B. and Dacies, C., Macromolecules 24 (1991) p. 5481; D.J.T. Landry, B.K. Coltrain, and B.K. Brady, Polymer 33 (1992) p. 1486.CrossRefGoogle Scholar
8. Fréchet, J.M.J., Science 263 (1994) p. 1710.CrossRefGoogle Scholar
9. Hudson, S.D., Jung, H.T., Percec, V., Cho, W.D., Johansson, G., Ungar, G., and Balagurusamy, V.S., Science 278 (1997) p. 449; V. Percec, C.H. Ahn, G. Ungar, D.J.P. Yeardley, M. Möller, and S. Sheiko, Nature 391 (1998) p. 161.CrossRefGoogle Scholar
10. Kawa, M. and Fréchet, J.M.J., Chem. Mater. 10 (1998) p. 286.CrossRefGoogle Scholar
11. Wang, P.W., Liu, Y.J., Devadoss, C., Bharathi, P., and Moore, J.S., Adv. Mater. 8 (1996) p. 237.CrossRefGoogle Scholar
12. Jansen, J.F.G.A., de Brabander-van den Berg, E.M.M., and Meijer, E.W., Science 266 (1994) p. 1226.CrossRefGoogle Scholar
13. Yin, R., Zhu, Y., Tomalia, D.A., and Ibuki, H., J. Am. Chem. Soc. 120 (1998) p. 2678.CrossRefGoogle Scholar
14. Hedrick, J.L., Hawker, C.J., Miller, R.D., Twieg, R., Srinivasan, S.A., and Trollsas, M., Macromolecules 30 (1997) p. 7607.CrossRefGoogle Scholar
15. Hawker, C.J. and Fréchet, J.M.J., J. Am. Chem. Soc. 112 (1990) p. 7638.CrossRefGoogle Scholar
16. Garozzo, D., Giuffrida, M., and Montaudo, G., Macromolecules 19 (1986) p. 1643; B. Plage and H. Schulter, Macromolecules 23 (1990) p. 2642.CrossRefGoogle Scholar
17. Trollsas, M.T., Hedrick, J.L., DuBois, P., Jerome, R., Ihre, H., and Hult, A., Macromolecules 30 (1997) p. 8508.CrossRefGoogle Scholar