Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T02:51:29.464Z Has data issue: false hasContentIssue false

Polymer Nanocomposites: Status and Opportunities

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Reinforcement of polymers with a second phase, whether inorganic or organic, to produce a polymer composite is common in the production of modern plastics. Polymer nanocomposites (PNCs) represent a radical alternative to these conventional polymer composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giannelis, E.P., Adv. Mater. 8 (1) (1996) p. 29.CrossRefGoogle Scholar
2. Pinnavaia, T.J. and Beal, G.W., eds., Polymer-Clay Nanocomposites (John Wiley & Sons, New York, 2001).Google Scholar
3. Vaia, R.A. and Krishnamoorti, R., eds., Polymer Nanocomposites (American Chemical Society, Washington, DC, 2001).Google Scholar
4. Nanocomposites 1999: Polymer Technology for the Next Century (Principia Partners, Exton, PA, 1999).Google Scholar
5. Alexandre, M. and Dubois, P., Mater. Sci. Eng. 28 (2000) p.1.CrossRefGoogle Scholar
6. Nanocomposites New Low-Cost, High-Strength Materials for Automotive Parts, ATP Project 97-02-0047 (National Institute of Standards and Technology, Gaithersburg, MD, 1997).Google Scholar
7. Lipatov, Y.S., Polymer Reinforcement (ChemTec Publishing, Toronto, 1995).Google Scholar
8. Grim, R.E., Clay Mineralogy, 2nd ed. (McGraw Hill, New York, 1968) p.362.Google Scholar
9. Hackett, E., Manias, E., and Giannelis, E.P., J.Chem. Phys. 108 (1998) p.7410.CrossRefGoogle Scholar
10. Lagaly, G., Solid State Ionics 22 (1986) p. 43.CrossRefGoogle Scholar
11. Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P., Chem. Mater. 6 (1994) p.1017; L.-Q. Wang, J.Liu, G.J. Exarhos, K.Y. Flanigan, and R. Bordia, J.Phys. Chem. B 104 (2000) p.2810.CrossRefGoogle Scholar
12. Kemnetz, S.J., Still, A.L., Cody, C.A., and Schwindt, R., J.Coating Technol. 61 (1989) p.47.Google Scholar
13. Vaia, R.A. and Giannelis, E.P., Macromolecules 30 (1997) p.7990, p.8000.CrossRefGoogle Scholar
14. Lyatskaya, Y. and Balazs, A.C., Macromolecules 31 (1998) p. 6676; A.C. Balazs, C. Singh, and E. Zhulina, Macromolecules 31 (1998) p. 8370; A.C. Balazs, C. Singh, E. Zhulina, and Y. Lyatskaya, Acc. Chem. Res. 32 (1999) p.651.CrossRefGoogle Scholar
15. Ginzburg, V.V. and Balazs, A.C., Macromolecules 32 (1999) p. 5681; V.V. Ginzburg, C. Singh, and A.C. Balazs, Macromolecules 33 (2000) p.1089. 16. R. Schöllhorn, Physica B 99 (1980) p.89. 17. B.K.G. Theng, Formation and Properties of Clay Polymer Complexes (Elsevier, New York, 1979). 18. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci., Part A: Polym. Chem. 31 (1993) p.2493. 19. D.C. Lee and L.W. Jang, J. Appl. Polym. Sci. 61 (1996) p.1117.CrossRefGoogle Scholar
20. Bandyopadhyay, S., Hsieh, A., and Giannelis, E.P., in Polymer Nanocomposites, edited by Vaia, R.A. and Krishnamoorti, R. (American Chemical Society, Washington, DC, 2001).Google Scholar
21. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., and Kamigaito, O., J.Mater. Res. 8 (1993) p.1174.CrossRefGoogle Scholar
22. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O., J. Polym. Sci., Part A: Polym. Chem. 31 (1993) p.983.CrossRefGoogle Scholar
23. Weimer, M.W., Chen, H., Giannelis, E.P., and Sogah, D.Y., J.Am. Chem. Soc. 121 (1999) p.1615.CrossRefGoogle Scholar
24. Lan, T., Kaviratna, P.D., and Pinnavaia, T.J., Chem. Mater. 7 (1995) p. 2144; T. Lan and T.J. Pinnavaia, Chem. Mater. 6 (1994) p.2216.CrossRefGoogle Scholar
25. Messersmith, P.B. and Giannelis, E.P., Chem. Mater. 6 (1994) p.1719.CrossRefGoogle Scholar
26. Vaia, R.A., Ishi, H., and Giannelis, E.P., Chem. Mater. 5 (1993) p.1694.CrossRefGoogle Scholar
27. Cho, J.W. and Paul, D.R., Polymer 42 (2001) p.1083.CrossRefGoogle Scholar
28. Burnside, S.D. and Giannelis, E.P., Chem. Mater. 7 (1995) p.1597.CrossRefGoogle Scholar
29. Krishnamoorti, R. and Giannelis, E.P., Macromolecules 30 (1997) p.4097.CrossRefGoogle Scholar
30. Ren, J., Silva, A.S., and Krishnamoorti, R., Macromolecules 33 (2000) p.3739.CrossRefGoogle Scholar
31. Lincoln, D.B., Vaia, R.A., Wang, Z.-G., and Hsiao, B.S., Polymer 42 (2001) p. 1621; D.B. Lincoln, R.A. Vaia, Z.-G. Wang, B.S. Hsiao, and R. Krishnamoorti, Polymer (2001) submitted for publication.CrossRefGoogle Scholar
32. Ito, M., Mizuochi, K., and Kanamoto, T., Polymer 39 (1998) p.4593.CrossRefGoogle Scholar
33. Gilman, J.W., Appl. Clay Sci. 15 (1999) p. 31.CrossRefGoogle Scholar
34. Beall, G.W., in Polymer-Clay Nanocomposites, edited by Pinnavaia, T.J. and Beall, G.W. (John Wiley & Sons, New York, 2001) p.267.Google Scholar
35. Yano, K., Usuki, A., and Okada, A., J. Polym. Sci., Part A: Polym. Chem. 35 (1997) p.2289.3.0.CO;2-9>CrossRefGoogle Scholar
36. Ruiz-Hitzky, E., Aranda, P., Casal, B., and Galvan, J.C., Adv. Mater. 7 (1995) p.180.CrossRefGoogle Scholar
37. Vaia, R.A., Vasudevan, S., Krawiec, W., Scanlon, L.G., and Giannelis, E.P., Adv. Mater. 7 (1995) p.154.CrossRefGoogle Scholar
38. Yang, Y., Zhu, Z.-K., Yin, J., Wang, X.-Y., and Qi, Z.-E., Polymer 40 (1999) p.4407.CrossRefGoogle Scholar
39. Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., and Lichtenhan, J., Appl. Clay Sci. 15 (1999) p.67.CrossRefGoogle Scholar
40. Giannelis, E.P., Krishnamoorti, R., and Manias, E., Adv. Prog. Polym. Sci. 138 (1999) p. 107.CrossRefGoogle Scholar
41. Manias, E., Chen, H., Krishnamoorti, R., Genzer, J., Kramer, E.J., and Giannelis, E.P., Macromolecules 33 (2000) p.7955.CrossRefGoogle Scholar
42. Valignat, M.P., Oshanin, G., Villette, S., Cazabat, A.M., and Morceau, M., Phys. Rev. Lett. 80 (1998) p.5337.CrossRefGoogle Scholar
43. Lee, J.Y., Baljon, A.R.C., Loring, R.F., and Panagiotopoulos, A.Z., J. Chem. Phys. 109 (1998) p.10321; J.Y. Lee, A.R.C. Baljon, and R.F. Loring, J.Chem. Phys. 111 (1999) p.9068, p.9754.CrossRefGoogle Scholar
44. Kremer, K. and Grest, G.S., J. Chem. Phys. 97 (1990) p.5057.CrossRefGoogle Scholar
45. Bharadwaj, R., Farmer, B.F., and Vaia, R.A., in Polymer Nanocomposites, edited by Vaia, R.A. and Krishnamoorti, R. (American Chemical Society, Washington, DC, 2001); R. Bharadwaj, B.F. Farmer, and R.A. Vaia, J.Chem. Phys. (2001) submitted for publication.Google Scholar
46. Zax, D.B., Yang, D.-K., Santos, R.A., Hegemann, H., Giannelis, E.P., and Manias, E., J.Chem. Phys. 112 (2000) p.2945.CrossRefGoogle Scholar
47. Anastasiadis, S.H., Karatasos, K., Vlachos, G., Manias, E., and Giannelis, E.P., Phys. Rev. Lett. 84 (2000) p.915.CrossRefGoogle Scholar
48. Vaia, R.A., Sauer, B.B., Tse, O., and Giannelis, E.P., J. Polym. Sci., Part B: Polym. Phys. 35 (1997) p. 59; S. Wong, R.A. Vaia, E.P. Giannelis, and D.B. Zax, Solid State Ionics 86-88 (1) (1996) p.547.3.0.CO;2-Q>CrossRefGoogle Scholar
49. Hackett, E., Manias, E., and Giannelis, E.P., Chem. Mater. 12 (2000) p.2161; M.R. Nyden and J. Gilman, Comp. Theor. Polym. Sci. 7 (1997) p.191.CrossRefGoogle Scholar