Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-17T20:25:16.424Z Has data issue: false hasContentIssue false

Three-Dimensional X-Ray Diffraction Microscopy Using High-Energy X-Rays

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Three-dimensional x-ray diffraction (3DXRD) microscopy is a tool for fast and nondestructive characterization of the individual grains, subgrains, and domains inside bulk materials. The method is based on diffraction with very penetrating hard x-rays (E ≥ 50 keV), enabling 3D studies of millimeter-to-centimeter-thick specimens.The position, volume, orientation, and elastic and plastic strain can be derived for hundreds of grains simultaneously. Furthermore, by applying novel reconstruction methods, 3D maps of the grain boundaries can be generated. The 3DXRD microscope in use at the European Synchrotron Radiation Facility in Grenoble, France, has a spatial resolution of ∼5 μm and can detect grains as small as 150 nm. The technique enables, for the first time, dynamic studies of the individual grains within polycrystalline materials. In this article, some fundamental materials science applications of 3DXRD are reviewed: studies of nucleation and growth kinetics during recrystallization, recovery, and phase transformations, as well as studies of polycrystal deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bouchard, R., Hupfeld, D., Lippmann, T., Neuefeind, J., Neumann, H.-B., Poulsen, H.F., Rutt, U., Schmidt, T., Schneider, J.R., Sussenbach, J., and Zimmermann, M. von, J. Synch. Rad. 5 (1998) p. 90.CrossRefGoogle Scholar
2Poulsen, H.F., Garbe, S., Lorentzen, T., Jensen, D. Juul, Poulsen, F.W., Andersen, N.H., Frello, T., Feidenhans'l, R., and Graafsma, H., J. Synch. Rad. 4 (1997) p. 147.CrossRefGoogle Scholar
3Lauridsen, E.M., Schmidt, S., Suter, R.M., and Poulsen, H.F., J. Appl. Cryst. 34 (2001) p. 744.CrossRefGoogle Scholar
4Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T., and Juul, D.Jensen, J. Applm. Cryst. 34 (2001) p. 751.CrossRefGoogle Scholar
5Poulsen, H.F. and Fu, X., J. Appl. Cryst. 36 (2003) p. 1062.CrossRefGoogle Scholar
6Poulsen, H.F., Philos. Mag. 83 (2003) p. 2761.CrossRefGoogle Scholar
7Markussen, T., Fu, X., Margulies, L., Lauridsen, E.M., Nielsen, S.F., Schmidt, S., and Poulsen, H.F., J. Appl. Cryst. 37 (2004).CrossRefGoogle Scholar
8Schmidt, S., Poulsen, H.F., and Vaughan, G.B.M., J. Appl. Cryst. 36 (2003) p. 326.CrossRefGoogle Scholar
9Pantleon, W., Poulsen, H.F., Almer, J., and Lienert, U., in Mater. Sci. Eng., A (Proc. ICSMA-13) (2004) in press.Google Scholar
10Bunge, H.J., Wcislak, L., Klein, H., Garbe, U., Schneider, J.R.. J. Appl. Cryst. 36 1240 (2003).CrossRefGoogle Scholar
11Gordon, R., Bender, R., and Herman, G.T., Theor, J.. Biol. 29 (1970) p. 471.Google Scholar
12Poulsen, H.F., Bowen, J.R., and Gundlach, C., Scripta Mater. (2004) in press.Google Scholar
13Offerman, S.E., van Dijk, N.H., Sietsma, J., Grigull, S., Lauridsen, E.M., Margulies, L., Poulsen, H.F., Rekveldt, M.T., and Zwaag, S. van der, Science 298 (2002) p. 1003.CrossRefGoogle Scholar
14Zener, C., J. Appl. Phys. 20 (1949) p. 950.CrossRefGoogle Scholar
15Lauridsen, E.M., Jensen, D. Juul, Poulsen, H.F., and Lienert, U., Scripta Mater. 43 (2000) p. 561.CrossRefGoogle Scholar
16Lauridsen, E.M., Poulsen, H.F., Nielsen, S.F., and Jensen, D. Juul, Acta Mater. 51 (2003) p. 4423.CrossRefGoogle Scholar
17Gundlach, C., Pantleon, W., Lauridsen, E.M., Margulies, L., Doherty, R.D., and Poulsen, H.F., Scripta Mater. 50 (2004) p. 477.CrossRefGoogle Scholar
18Poulsen, H.F., Lauridsen, E.M., Schmidt, S., Margulies, L., and Driver, J.H., Acta Mater. 51 (2003) p. 2517.CrossRefGoogle Scholar
19Margulies, L., Winther, G., and Poulsen, H.F., Science 291 (2001) p. 2392.CrossRefGoogle Scholar
20Poulsen, H.F., Margulies, L., Schmidt, S., and Winther, G., Acta Mater. 51 (2003) p. 3821.CrossRefGoogle Scholar
21Winther, G., Margulies, L., Schmidt, S., and Poulsen, H. F.. Acta Mater. (2004) accepted for publication.Google Scholar
22Nielsen, S.F., Ludwig, W., Bellet, D., Lauridsen, E.M., Poulsen, H.F., and Jensen, D. Juul, in Proc. 21st Riso Int. Symp. on Materials Science, edited by Hansen, N., Huang, X., Juul, D. Jensen, Lauridsen, E.M., Leffers, T., Pantleon, W., Sabin, T.J., and Wert, J.A.. (Risø National Laboratory, Roskilde, Denmark, 2000) p. 473.Google Scholar
23Nielsen, S.F., Poulsen, H.F., Beckmann, F., Thorning, C., and Wert, J.A., Acta Mater. 51 (2003) p. 2407.CrossRefGoogle Scholar