Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T20:18:36.532Z Has data issue: false hasContentIssue false

New Frontiers of Metamaterials: Design and Fabrication

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Artificially engineered metamaterials have emerged with properties and functionalities previously unattainable in natural materials. The scientific breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design and novel parallel fabrication methods. For example, a smooth superlens has been demonstrated with 30-nm imaging resolution, or 1/12 of the corresponding wavelength, far below the diffraction limit. Similarly, a photoswitchable optical negative-index material has been printed, showing a remarkable tuning range of refractive index in the communication wavelength. New frontiers are being explored as intrinsic limitations challenge the scaling of microwave metamaterial designs to optical frequencies. These novel metamaterials promise an entire new generation of passive and active optical elements, such as paper-thin superlenses and modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mater. Today 11, 4045 (2008).Google Scholar
2.Smith, D.R., Pendry, J.B., Wiltshire, M.C.K., Science 305, 788 (2004).Google Scholar
3.Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001).Google Scholar
4.Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
5.Greegor, R.B., Parazzoli, C.G., Li, K., Tanielian, M.H., Appl. Phys. Lett. 82, 2356 (2003).Google Scholar
6.Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C., Nat. Mater. 6 946 (2007).Google Scholar
7.Lezec, H.J., Dionne, J.A., Atwater, H.A., Science 316, 430 (2007).Google Scholar
8.Yen, T.J., Padilla, W.J., Fang, N., Vier, D.C., Smith, D.R., Pendry, J.B., Basov, D.N., Zhang, X., Science 303, 1494 (2004).Google Scholar
9.Wu, W., Yu, Z.N., Wang, S.Y., Williams, R.S., Liu, Y.M., Sun, C., Zhang, X., Kim, E., Shen, Y.R., Fang, N.X., Appl. Phys. Lett. 90, 063107 (2007).Google Scholar
10.Zhou, J., Koschny, T., Kafesaki, M., Economou, E.N., Pendry, J.B., Soukoulis, C.M., Phys. Rev. Lett. 95, 223902 (2005).Google Scholar
11.Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Science 312, 892 (2006).Google Scholar
12.Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 32, 53 (2007).Google Scholar
13.Kim, E., Shen, Y.R., Wu, W., Ponizovskaya, E., Yu, Z., Bratkovsky, A.M., Wang, S.Y., Williams, R.S., Appl. Phys. Lett. 91, 173105 (2007).Google Scholar
14.Fang, N., Liu, Z. W., Yen, T.J., Zhang, X., Opt. Express 11, 682 (2003); available at http://www.opticsinfobase.org/abstract.cfm?URI=oe-11–7–682.Google Scholar
15.Shalaev, V.M., Cai, W.S., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V., Opt. Lett. 30, 3356 (2005).Google Scholar
16.Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., Nature 391, 667 (1998).Google Scholar
17.Nie, S.M., Emory, S.R., Science 275, 1102 (1997).Google Scholar
18.Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J., Science 305, 847 (2004).Google Scholar
19.Williams, C.R., Andrews, S.R., Maier, S.A., Fernandez-Dominguez, A.I., Martin Moreno, L., Garcia-Vidal, F.J., Nat. Photonics 2, 175 (2008).Google Scholar
20.Elser, J., Podolskiy, V.A., Phys. Rev. Lett. 100, 066402 (2008).Google Scholar
21.Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000).Google Scholar
22.Fang, N., Lee, H., Sun, C., Zhang, X., Science 308, 534 (2005).Google Scholar
23.Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R., Science 313, 1595 (2006).Google Scholar
24.Chaturvedi, P., Wu, W., Logeeswaran, V., Yu, Z., Xiong, Y., Islam, S., Wang, S.-Y., Zhang, X., Fang, N., paper presented at Photonic Metamaterials: From Random to Periodic, sponsored by the Optical Society of America (OSA), Jackson Hole, Wyoming, 4–7 June 2007.Google Scholar
25.Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X., New J. Phys. 7, 255 (2005).Google Scholar
26.Chaturvedi, P., Fang, N., in Mater. Res. Soc. Symp. Proc. 919, Wang, S.-Y., Fang, N.X., Thylen, L., Islam, M.S., Eds. (Materials Research Society, Warrendale, PA, 2006), p. 0919-J04–07.Google Scholar
27.Shin, H., Fan, S.H., Phys. Rev. Lett. 96, 073907 (2006).Google Scholar
28.Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M., Phys. Rev. Lett. 95, 203901 (2005).Google Scholar
29.Enkrich, C., Perez-Willard, R., Gerthsen, D., Zhou, J.F., Koschny, T., Soukoulis, C.M., Wegener, M., Linden, S., Adv. Mater. 17, 2547 (2005).Google Scholar
30.Wu, W., Kim, E., Ponizovskaya, E., Liu, Y., Yu, Z., Fang, N., Shen, Y.R., Bratkovsky, A.M., Tong, W., Sun, C., Zhang, X., Wang, S.Y., Williams, R.S., Appl. Phys. A 87, 143 (2007).Google Scholar
31.Jung, G.Y., Johnston-Halperin, E., Wu, W., Yu, Z.N., Wang, S.Y., Tong, W.M., Li, Z.Y., Green, J.E., Sheriff, B.A., Boukai, A., Bunimovich, Y., Heath, J.R., Williams, R.S., Nano Lett. 6, 351 (2006).Google Scholar
32.Hsu, K.H., Schultz, P.L., Ferreira, P.M., Fang, N.X., Nano Lett. 7, 446 (2007).Google Scholar
33.Basile, L., Hawoong, H., Czoschke, P., Chiang, T.C., Appl. Phys. Lett. 84, 4995 (2004).Google Scholar
34.Logeeswaran, V.J., Chan, M.L., Bayam, Y., Saif Islam, M., Horsley, D.A., Li, X., Wu, W., Wang, S.Y., Williams, R.S., Appl. Phys. A 87, 187 (2007).Google Scholar
35.Galisteo, J.F., Garcia-Santamaria, F., Golmayo, D., Juarez, B.H., Lopez, C., Palacios, E., J. Opt. A: Pure Appl. Opt. 7, S244 (2005).Google Scholar
36.Menon, L., Lu, W., Friedman, A., Bennett, S., Heiman, D., Sridhar, S., paper presented at the APS March Meeting, New Orleans, LA, 10–14 March 2008.Google Scholar
37.Norris, D.J., Vlasov, Y.A., Adv. Mater. 13, 371 (2001).Google Scholar
38.Kong, J.A., Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, 1998).Google Scholar
39.Ramakrishna, S.A., Pendry, J.B., Wiltshire, M.C.K., Stewart, W.J., J. Mod. Opt. 50, 1419 (2003).Google Scholar
40.Salandrino, A., Engheta, N., Phys. Rev. B 74, 075103 (2006).Google Scholar
41.Liu, Z.W., Lee, H., Xiong, Y., Sun, C., Zhang, X., Science 315, 1686 (2007)Google Scholar
42.Zhang, S., Yin, L., Fang, N., in ASME International Mechanical Engineering Congress and Exposition. (ASME, New York, 2007), p. IMECE200744076.Google Scholar
43.Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Nat. Mater. 5, 452 (2006).Google Scholar