Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T14:52:24.842Z Has data issue: false hasContentIssue false

Electron-Beam Lithographic Studies of the Scaling of Phase-Change Memory

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Phase-change random-access memory (PCRAM) is a promising technology for future nonvolatile storage with the added potential for possible impact on dynamic random-access memory technologies. To be successful, however, PCRAM must be able to scale to dimensions on the order of a few tens of nanometers, considering the increasingly tiny memory cells that are projected for future technology nodes. The experiments discussed in this article directly address these scaling properties, examining both the materials themselves and the operation of nanoscale devices. One series of experiments is time-resolved x-ray diffraction studies of ultrathin films and nanostructures. Electron-beam lithography was applied to pattern thin films into nanostructures with dimensions down to 20 nm. The article also includes descriptions of prototype PCRAM devices, successfully fabricated and tested down to phase-change material cross sections of 3 nm × 20 nm. The measurements provide a clear demonstration of the excellent scaling potential offered by this technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ovshinsky, S., Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
2.Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., J. Appl. Phys. 69, 2849 (1991).CrossRefGoogle Scholar
3.Tominaga, J., Kikukawa, T., Takahashi, M., Phillips, R.T., J. Appl. Phys. 82, 3214 (1997).CrossRefGoogle Scholar
4.Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
5.Hudgens, S., Johnson, B., MRS Bull. 829 (2004).CrossRefGoogle Scholar
6.Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R., IEEE Trans. Electron Devices 51, 452 (2004).CrossRefGoogle Scholar
7.Adler, D., Henisch, H.K., Mott, N., Rev. Mod. Phys. 50, 209 (1978).CrossRefGoogle Scholar
8.Redaelli, A., Pirovano, A., Pellizzer, F., Lacaita, A.L., Ielmini, D., Bez, R., IEEE Trans. Electron Devices 25, 684 (2004).CrossRefGoogle Scholar
9.Ielmini, D., Lacaita, A., Mantegazza, D., IEEE Trans. Electron Devices 54, 308 (2007).CrossRefGoogle Scholar
10.Pirovano, A., Lacaita, A.L., Pellizzer, F., Kostylev, S.A., Benvenuti, A., Bez, R., IEEE Trans. Electron Devices 51, 714 (2004).CrossRefGoogle Scholar
11. International Technical Roadmap for Semiconductors, 2006; www.itrs.net/Links/2006Update/2006UpdateFinal.htm.Google Scholar
12.Lankhorst, M.H.R., Ketelaars, B.W.S.M.M., Wolters, R.A.M., Nat. Mater. 4, 347 (2005).CrossRefGoogle Scholar
13.van Pieterson, L., Lankhorst, M.H.R., van Schijndel, M., Kuiper, A.E.T., Roosen, J.H.J., J. Appl. Phys. 97, 83520 (2005).CrossRefGoogle Scholar
14.van Pieterson, L., van Schijndel, M., Rijpers, J.C.N., Appl. Phys. Lett. 83, 1373 (2003).CrossRefGoogle Scholar
15.Yeo, E.G., Shi, L.P., Zhao, R., Chong, T.C., “Investigation on Ultra-high Density and High Speed Non-volatile Phase Change Random Access Memory (PCRAM) by Material Engineering,” in Mater. Res. Soc. Symp. Proc. 918, Taylor, P.C., Kolobov, A.V., Edwards, A.H., Maimon, J., Eds. (Materials Research Society, Warrendale, PA, 2006), paper H05-05-G06–05.Google Scholar
16.Ahn, S.J., Song, Y.J., Jeong, C.W., Shin, J.M., Fai, Y., Hwang, Y.N., Lee, S.H., Ryoo, K.C., Lee, S.Y., Park, J.H., Horii, H., Ha, Y.H., Yi, J.H., Kuh, B.J., Koh, G.H., Jeong, G.T., Jeong, H.S., Kin, K., IEEE Int. Electron Devices Meeting (San Francisco, CA, December 2004), pp. 907910.Google Scholar
17.Horii, H., Yi, J.H., Park, J.H., Ha, Y.H., Baek, I.G., Park, S.O., Hwang, Y.N., Lee, S.H., Kim, Y.T., Lee, K.H., Chung, U.-I., Moon, J.T., Symp. VLSI Technol. Dig. Tech. Pap. (Kyoto, Japan, 10–12 June 2003), pp. 177178.Google Scholar
18.Raoux, S., Salinga, M., Jordan-Sweet, J., Kellock, A., J. Appl. Phys. 101, 44909 (2007).CrossRefGoogle Scholar
19.Chen, M., Rubin, K.A., Barton, R.W., Appl. Phys. Lett. 49, 502 (1986).CrossRefGoogle Scholar
20.Chung, H.B., Shin, K., Lee, J.M., J. Vac. Sci. Technol. A 25, 48 (2007).CrossRefGoogle Scholar
21.Wang, K., Steimer, C., Detemple, R., Wamwangi, D., Wuttig, M., Appl. Phys. A 81, 1601 (2005).CrossRefGoogle Scholar
22.Yoon, S.M., Lee, N.Y., Ryu, S.O., Choi, K.J., Park, Y.S., Lee, S.Y., Yu, B.G., Kang, M.J., Choi, S.Y., Wuttig, M., IEEE Electron Device Lett. 27, 445 (2006).CrossRefGoogle Scholar
23.Iwasaki, H., Harigaya, M., Nonoyama, O., Kageyama, Y., Takahashi, M., Yamada, K., Deguchi, H., Ide, Y., Jpn. J. Appl. Phys. 32, 5241 (1993).CrossRefGoogle Scholar
24.Raoux, S., Rettner, C.T., Jordan-Sweet, J., Deline, V.R., Philipp, J.B., Lung, H.-L., Proc. Eur. Symp. Phase Change Ovonic Sci. (Grenoble, France, May 2006), pp. 127134.Google Scholar
25.Satoh, H., Sugawara, K., Tanaka, K., J. Appl. Phys. 99, 024306 (2006).CrossRefGoogle Scholar
26.Hamann, H.F., O'Boyle, M., Martin, Y.C., Rooks, M., Wickramasinghe, H.K., Nat. Mater. 5, 383 (2006).CrossRefGoogle Scholar
27.Gotoh, T., Sugawara, K., Tanaka, K., Jpn. J. Appl. Phys. 43, L818 (2004).CrossRefGoogle Scholar
28.Wei, X., Shi, L., Chong, T.C., Zhao, R., Lee, H.K., Jpn. J. Appl. Phys. 46, 2211 (2007).Google Scholar
29.Jung, Y., Lee, S.-H., Ko, D.-K., Agarwal, R., J. Am. Chem. Soc. 128, 14026 (2006).CrossRefGoogle Scholar
30.Lee, S.-H., Ko, D.-k., Jung, Y., Agarwal, R., Appl. Phys. Lett. 89, 223116 (2006).CrossRefGoogle Scholar
31.Sun, X., Yu, B., Meyyappan, M., Appl. Phys. Lett. 90, 183116 (2007).CrossRefGoogle Scholar
32.Meister, S., Peng, H., McIlwrath, K., Jarausch, K., Zhang, X.F., Cui, Y., Nano Lett. 6, 1514 (2006).CrossRefGoogle Scholar
33.Sun, X., Yu, B., Ng, G., Nguyen, T.D., Meyyappan, M., Appl. Phys. Lett. 89, 233121 (2006).CrossRefGoogle Scholar
34.Suh, D.S., Lee, E., Kim, K.H.P., Noh, J.S., Shin, W.C., Kang, Y.S., Kim, C., Khang, Y., Yoon, H.R., Jo, W., Appl. Phys. Lett. 90, 023101 (2007).CrossRefGoogle Scholar
35.Soares, B.F., Jonson, F., Zheludev, N.I., Phys. Rev. Lett. 98, 153905 (2007).CrossRefGoogle Scholar
36.Choi, H.S., Seol, K.S., Takeuchi, K., Fujita, J., Ohki, Y., Jpn. J. Appl. Phys. 44, 7720 (2005).CrossRefGoogle Scholar
37.Yoon, H.R., Jo, W., Lee, E.H., Lee, J.H., Kim, M., Lee, K.Y., Khang, Y., J. Non-Cryst. Solids 351, 3430 (2005).CrossRefGoogle Scholar
38.Zhang, Y., Wong, H.-S.P., Raoux, S., Cha, J.N., Rettner, C.T., Krupp, L.E., Topuria, T., Milliron, D.J., Rice, P.M., Jordan-Sweet, J., Appl. Phys. Lett. 91, 13104 (2007).CrossRefGoogle Scholar
39.Cha, J.N., Zhang, Y., Wong, H.-S.P., Raoux, S., Rettner, C., Krupp, L., Deline, V., Chem. Mater. 19, 839 (2007).CrossRefGoogle Scholar
40.Raoux, S., Zhang, Y., Milliron, D., Cha, J., Caldwell, M., Rettner, C.T., Jordan-Sweet, J., Wong, H.S.P., Proc. Eur. Symp. Phase Change Ovonic Sci. (Zermatt, Switzerland, September 2007), Paper no. F01–19.Google Scholar
41.Raoux, S., Rettner, C.T., Jordan-Sweet, J.L., Kellock, A.J., Topuria, T., Rice, P.M., Miller, D.C., J. Appl. Phys. 102, 94305 (2007).CrossRefGoogle Scholar
42.Raoux, S., Rettner, C.T., Jordan-Sweet, J.L., Salinga, M., Toney, M., Proc. Eur. Symp. Phase Change Ovonic Sci. (Cambridge, UK, 2005), Paper no. 14.Google Scholar
43.Raoux, S., Jordan-Sweet, J.L., Kellock, A.J., J. Appl. Phys. 103, 114310 (2008).CrossRefGoogle Scholar
44.Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., Wuttig, M., J. Appl. Phys. 87, 4130 (2000).CrossRefGoogle Scholar
45.Lai, S., Lowrey, T., International Electron Devices Meeting, Technical Digest Washington, DC, 2–5 December 2001, pp. 36513654.Google Scholar
46.Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Hudgens, S., Bez, R., IEDM Tech. Dig. 699 (2003).Google Scholar
47.Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W.P., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R., Lam, C., IEDM Tech. Dig. 777–780, S30P3 (2006).Google Scholar
48.Salinga, M., PhD thesis, Technical University Aachen, Aachen, Germany, June 2008.Google Scholar