Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T23:55:32.344Z Has data issue: false hasContentIssue false

Networks of epiphytic orchids and host trees in Brazilian gallery forests

Published online by Cambridge University Press:  29 January 2010

Igor A. Silva*
Affiliation:
Departamento de Botânica, Universidade Federal de São Carlos, PO Box 676, São Carlos, SP, 13565-905, Brazil
Alessandro W. C. Ferreira
Affiliation:
Departamento de Botânica, Universidade Federal de São Carlos, PO Box 676, São Carlos, SP, 13565-905, Brazil
Maria I. S. Lima
Affiliation:
Departamento de Botânica, Universidade Federal de São Carlos, PO Box 676, São Carlos, SP, 13565-905, Brazil
João J. Soares
Affiliation:
Departamento de Botânica, Universidade Federal de São Carlos, PO Box 676, São Carlos, SP, 13565-905, Brazil
*
1Corresponding author. Email: igor6cordas@yahoo.com.br

Abstract:

Species interactions have been recently depicted as networks, in which each species is connected to one or more other species in binary interaction matrices. Forty networks of epiphytic orchid and host tree species were assessed in Brazilian gallery forests. The nestedness of the networks was estimated with the NODF index and the significance was tested with null models. The phylogenetic structure of the network was also assessed, by searching for phylogenetic signals in the number of interactions and in the similarity of interacting species. In total, 105 orchid species and 132 host tree species were sampled. A nested pattern in all orchid–host tree networks was found. However, phylogenetic signals were not observed. The results support that the host specificity of orchids is small and most of the interactions occur among generalist orchids and generalist host trees. While the concept of species-specificity can thus be rejected, the extreme alternative – that interacting orchids and host trees are not a random subset of the regional species pool – can be dismissed as well. However, factors other than phylogenetic history may structure interaction networks of epiphytic orchids and host trees.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Science 164:S165S184.CrossRefGoogle Scholar
ALMEIDA-NETO, M., GUIMARÃES, P., GUIMARÃES, P. R., LOYOLA, R. D. & ULRICH, W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:12271239.CrossRefGoogle Scholar
ARRUDA, R., CARVALHO, L. N. & DEL-CLARO, K. 2006. Host specifity of a Brazilian mistletoe, Struthanthus aff. polyanthus (Loranthaceae), in cerrado tropical savanna. Flora 201:127134.CrossRefGoogle Scholar
ATMAR, W. & PATTERSON, B. D. 1993. The measure of order and disorder in the distribution of species in fragmented habitats. Oecologia 96:373382.CrossRefGoogle Scholar
BASCOMPTE, J. & JORDANO, P. 2007. The structure of plant–animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38:567593.CrossRefGoogle Scholar
BASCOMPTE, J., JORDANO, P., MELIÁN, C. J. & OLESEN, J. M. 2003. The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences USA 100:93839387.CrossRefGoogle ScholarPubMed
BENZING, D. H. 1981. Bark surfaces and the origin and maintenance of diversity among angiosperm epiphytes: a hypothesis. Selbyana 5:248255.Google Scholar
BLICK, R. & BURNS, K. C. 2009. Network properties of arboreal plants: are epiphytes, mistletoes and lianas structured similarly? Perspectives in Plant Ecology, Evolution and Systematics 11:4152.CrossRefGoogle Scholar
BLOMBERG, S. P. & GARLAND, T. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology 15:899910.CrossRefGoogle Scholar
BLOMBERG, S. P., GARLAND, T. & IVES, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.Google ScholarPubMed
BURNS, K. C. 2007. Network properties of an epiphyte metacommunity. Journal of Ecology 95:11421151.CrossRefGoogle Scholar
CALLAWAY, R., REINHART, K., MOORE, G., MOORE, D. & PENNINGS, S. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.CrossRefGoogle ScholarPubMed
CATLING, P. M. & LEFKOVITCH, L. P. 1989. Associations of vascular epiphytes in a Guatemalan cloud forest. Biotropica 21:3540.Google Scholar
CATLING, P. M., BROWNELL, V. R. & LEFKOVITCH, L. P. 1986. Epiphytic orchids in a Belizean grapefruit orchard: distribution, colonization, and association. Lindleyana 1:194202.Google Scholar
CHASE, M. W., BARRETT, R. L., CAMERON, K. M. & FREUDENSTEIN, J. V. 2003. DNA data and Orchidaceae systematics: a new phylogenetic classification. Pp. 6989 in Dixon, K. M., Kell, S. P., Barrett, R. L. & Cribb, P. J. (eds.). Orchid conservation. Natural History Publications, Kota Kinabalu. 418 pp.Google Scholar
COGNIAUX, A. 1893–1896. Orchidaceae. Pp. 1672 in Martius, C. F. P., Eichler, A. G. & Urban, I. (eds.). Flora brasiliensis 3(4). F. Fleischer, Munich.Google Scholar
DRESSLER, R. L. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland. 338 pp.Google Scholar
FELSENSTEIN, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
GARLAND, T., HARVEY, P. H. & IVES, A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41:1832.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GUARINO, E. S. G. & WALTER, B. M. T. 2005. Fitossociologia de dois trechos inundáveis de Matas de Galeria no Distrito Federal, Brasil. Acta Botanica Brasilica 19:431442.CrossRefGoogle Scholar
GUIMARÃES, P. R. & GUIMARÃES, P. 2006. Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software 21:15121513.CrossRefGoogle Scholar
GUIMARÃES, P. R., RICO-GRAY, V., REIS, S. F. & THOMPSON, J. N. 2006. Asymmetries in specialization in ant–plant networks. Proceedings of the Royal Society of London B 273:20412047.Google Scholar
HOEHNE, F. C. 1940. Orchidaceas. Pp. 1254 in Hoehne, F. C. (ed.). Flora Brasilica 12(1). Secretaria da Agricultura do Estado de São Paulo, São Paulo.Google Scholar
INGRAM, S. & NADKARNI, N. 1993. Composition and distribution of epiphytic organic matter in a Neotropical cloud forest, Costa Rica. Biotropica 25:370383.CrossRefGoogle Scholar
JOHANSSON, D. R. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59:1136.Google Scholar
KÖPPEN, W. 1948. Climatología. Fondo de Cultura Economica, Ciudad del México. 466 pp.Google Scholar
KREFT, H., KÖSTER, N., KÜPER, W., NIEDER, J. & BARTHLOTT, W. 2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography 31:14631476.Google Scholar
KRISHNA, A., GUIMARÃES, P. R., JORDANO, J. & BASCOMPTE, J. 2008. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:16091918.CrossRefGoogle Scholar
KRÖMER, T., KESSLER, M., GRADSTEIN, S. R. & ACEBEY, A. 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32:17991809.CrossRefGoogle Scholar
LAUBE, S. & ZOTZ, G. 2006. Neither host specific nor random: vascular epiphytes on three tree species in a Panamanian rainforest. Annals of Botany 97:11031114.CrossRefGoogle Scholar
LEAKE, J. R. 1994. The biology of myco-heterotrophic plants. New Phytologist 127:171216.CrossRefGoogle Scholar
LÓPEZ-VILLALOBOS, A., FLORES-PALACIOS, A. & ORTIZ-PULIDO, R. 2008. The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecology 198:265274.Google Scholar
MANLY, B. F. J. 2004. Multivariate statistical methods: a primer. (Third edition). Chapman and Hall/CRC, New York. 226 pp.CrossRefGoogle Scholar
MARQUES, M. C. M., SILVA, S. M. & SALINO, A. 2003. Florística e estrutura do componente arbustivo-arbóreo de uma floresta higrófila da bacia do rio Jacaré-Pepira, SP, Brasil. Acta Botanica Brasilica 17:495506.Google Scholar
MIGENIS, L. E. & ACKERMAN, J. D. 1993. Orchid–phorophyte relationships in a forest watershed in Puerto Rico. Journal of Tropical Ecology 9:231240.Google Scholar
OLLERTON, J., MCCOLLIN, D., FAUTIN, D. G. & ALLEN, G. R. 2007. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proceedings of the Royal Society of London B 274:591598.Google ScholarPubMed
PRINZING, A., DURKA, W., KLOTZ, S. & BRANDL, R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London B 268;23832389.CrossRefGoogle ScholarPubMed
PROULX, S. R., PROMISLOW, D. E. L. & PHILLIPS, P. C. 2005. Network thinking in ecology and evolution. Trends in Ecology and Evolution 20:345353.Google Scholar
QIAN, H. & RICKLEFS, R. E. 2004. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. Journal of Ecology 92:253265.CrossRefGoogle Scholar
RASMUSSEN, H. N. 2002. Recent developments in the study of orchid mycorrhiza. Plant and Soil 244:149163.CrossRefGoogle Scholar
REZENDE, E., JORDANO, P. & BASCOMPTE, J. 2007. Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116:19191929.Google Scholar
ROBERTS, P. 1999. Rhizoctonia-forming fungi: a taxonomic guide. Royal Botanic Gardens, Kew. 246 pp.Google Scholar
SMITH, S. E. & READ, D. J. 1997. Mycorrhizal symbiosis. (Second edition). Academic Press, San Diego. 605 pp.Google Scholar
THOMPSON, J. N. 2005. The geographic mosaic of coevolution. Chicago University Press, Chicago. 443 pp.CrossRefGoogle Scholar
VÁZQUEZ, D. P., POULIN, R., KRASNOV, B. R. & SHENBROT, G. I. 2005. Species abundance and the distribution of specialization in host–parasite interaction networks. Journal of Animal Ecology 74:946955.Google Scholar
VÁZQUEZ, D. P., MELIÁN, C. J., WILLIAMS, N. M., BLÜTHGEN, N., KRASNOV, B. R. & POULIN, R. 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:11201127.Google Scholar
WAKE, D. B. & LARSON, A. 1987. Multidimensional analysis of an evolving lineage. Science 238:4248.CrossRefGoogle ScholarPubMed
WEBB, C. O. & DONOGHUE, M. J. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5:181183.Google Scholar
WIKSTRÖM, N., SAVOLAINEN, V. & CHASE, M. W. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London B 268:22112220.CrossRefGoogle ScholarPubMed
WRIGHT, S. 1982. Character change, speciation, and the higher taxa. Evolution 36:427443.CrossRefGoogle ScholarPubMed