Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T00:37:07.069Z Has data issue: false hasContentIssue false

Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina

Published online by Cambridge University Press:  03 November 2011

R. J. Pankhurst
Affiliation:
British Antarctic Survey, c/o NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, U.K.
C. W. Rapela
Affiliation:
Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, 644 Calle No. 1, 1900 La Plata, Argentina
C. M. Fanning
Affiliation:
PRISE, Research School of Earth Sciences,The Australian National University, Mills Road, Canberra, ACT 01201, Australia

Abstract

Three granitoid types are recognised in the Famatinian magmatic belt of NW Argentina, based on lithology and new geochemical data: (a) a minor trondhjemite–tonalite–granodiorite (TTG) group, (b) a metaluminous I-type gabbro-monzogranite suite, and (c) S-type granites. The latter occur as small cordieritic intrusions associated with 1-type granodiorites and as abundant cordierite-bearing facies in large batholithic masses. Twelve new SHRIMP U-Pb zircon ages establish the contemporaneity of all three types in Early Ordovician times (mainly 470-490 Ma ago). Sr- and Nd-isotopic data suggest that, apart from some TTG plutons of asthenospheric origin, the remaining magmas were derived from a Proterozoic crust-lithospheric mantle section. Trace element modelling suggests that the TTG originated by variable melting of a depleted gabbroid source at 10-12kbar, and the I-type tonalite-granodiorite suite by melting of a more enriched lithospheric source at c. 5 kbar. The voluminous intermediate and acidic I-types involved hybridisation with lower and middle crustal melts. The highly peraluminous S-type granites have isotopic and inherited zircon patterns similar to those of Cambrian supracrustal metasedimentary rocks deposited in the Pampean cycle, and were derived from them by local anatexis. Other major components of the S-type batholiths involved melting of deep crust and mixing with the I-type magmas, leading to an isotopic and geochemical continuum.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G., Miller, H. and Toselli, A. 1996. Geología del Sistema de Famatina, Münchner Geologische Hefte, Reihe A19.Google Scholar
Arth, J. G. 1976. Behaviour of trace elements during magmatic processes—a summary of theoretical models and their applications. Journal of Research of the US Geological Survey 4, 41–7.Google Scholar
Bacon, C. R.&Druitt, T. H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology 98, 224–56.Google Scholar
Baldo, E. G. A., Murra, J. A., Casquct, C., Galindo, C.&Saavedra, J. 1999. El gabro coronitico de la Sierra dc Valle Fértil, Sierras Pampeanas, Argentina: condiciones P-T de la etapa coronítica. Boletin de la Sociedad Española de Mineralogía 22–A, 1718.Google Scholar
Caffe, P. J.&Baldo, E. G. 1994. El plutón trondhjemítico de ‘La Fronda’, borde occidental de la Sierra de Cuniputo, Córdoba, Argentina. Actas, 7th Congreso Geológico Chileno, Concepción 2, 972–76. Concepción, Chile: Universidad de Concepción, Departamento Ciencias de la Tierra.Google Scholar
Castro, A., Patiño Douce, A. E., Corretgé, L. G., de la Rosa, J. D., El-Biad, M.&El-Hmidi, H. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology 135, 255–76.Google Scholar
Chappell, B. W. 1996. Compositional variation within granite suites of the Lachlan Fold Belt: its causes and implications for the physical state of granite magma. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 159–70.Google Scholar
Chappell, B. W.&White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 126.Google Scholar
Cisterna, C. E. 1998. La granodiorita de Las Angosturas, Sistema de Famatina, Argentina: caracterización petrográfica y química. Revista de la Asociación Geológica Argentina 53, 5768.Google Scholar
Collins, W. J. 1996. Lachlan Fold Belt granitoids: products of three component mixing. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 171–81.Google Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Zhang & Guogan, Ma 1992. Zircon U-Pb ages from the early Cambrian time-scale. Journal of the Geological Society of London 149, 171184.Google Scholar
Dahlquist, J. A.&Baldo, E. G. 1996. Metamorfismo y deformación Famatinianos en la Sierra dc Chepes, La Rioja, Argentina. Actas, XIII Congreso Geológico Argentina y III Congreso de Exploración de Hidrocarburos 5, 393409. Buenos Aires: Asociación Geológica Argentina.Google Scholar
DeBari, S. M. 1994. Petrogenesis and physical evolution of the Fiambalá gabbronorite, northwestern Argentina: syntectonic magmatism in the deep crust of a continental margin arc. Journal of Petrology 35, 679713.Google Scholar
Debon, F.&Le Fort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 135–49.Google Scholar
Fujimaki, H., Tatsumoto, M.&Aoki, K. 1984. Partition coefficients of Hf, Zr and REE between phenocrysts and groundmasses. Proceedings of the fourteenth lunary and planetary science conference, Part 2. Journal of Geophysical Research 89, Suppl. B66272.Google Scholar
Galliski, M. A.&Miller, C. F. 1989. Petrogénesis de las tronhjemitas de Cachi: condicionamientos impuestos por elementos de tierras raras e implicancias tectónicas. Actas, Reunión sobre Geotransedas de América del Sur, 5862. Montivideo, Uruguay: Universidad de la República, Facultad de Agronomía.Google Scholar
Galliski, M. A., Toselli, A.&Saavedra, J. 1990. Petrology and geochemistry of the Cachi high-alumina trondhjemites, northwestern Argentina. In Kay, S. M.&Rapela, C. W. (eds) Plutonism from Antarctica to Alaska, Geological Society of America Special Paper 241, 91100.Google Scholar
Gomez, G. M.&Lira, R. 1998. Geología y aspectos geoquímicos del plutón granítico de La Playa, Sierra de Guasapampa, provincia de Córdoba. Revista de la Asociación Geológica Argentina 53, 291305.Google Scholar
Gonzalez, R. L., Omil, M.&Ruiz, D. L. 1985. Observaciones y edades potasio-argón de formaciones de la Sierra de Paimán, Provincia de La Rioja. Acta Geológica Lilloana 16, 281–7.Google Scholar
Gradstein, F. M.&Ogg, J. 1996. A Phanerozoic time scale. Episodes 19, 35.Google Scholar
Lork, A.&Bahlburg, H. 1993. Precise U-Pb ages of monazitcs from the Faja Eruptiva de La Puna Oriental, NW Argentina. Actas, XII Congreso Geológica Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza) 4, 16. Buenos Aires: Asociación Geológica Argentina.Google Scholar
Lork, A., Grauert, B., Kramm, U.&Miller, H. 1991. U-Pb investigations of monazite and polyphase zircon: implications for age and petrogenesis of trondhjemites of the southern Cordillera Oriental, NW Argentina. Actas, 6th Congreso Geológico Chileno (Viña del Mar), 398402. Santiago de Chile: Servicio Nacional de Geología y Minería.Google Scholar
Loske, W.&Miller, H. 1996. Sistemática U-Pb de circones del granito Ñuñorco-Sañogasta. In Aceñolaza, F. G., Miller, H.&Toselli, A. (eds) Geología del Sistema de Famatina, Münchner Geologische Hefte, Reihe A19, 221–7.Google Scholar
Lucassen, F., Lewerenz, S., Franz, G., Viramonte, J.&Mezger, K. 1999. Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina. Contributions to Mineralogy and Petrology 134, 325–41.Google Scholar
Martino, R., Kraemer, P., Escayola, M., Giambastianai, M.&Arnosio, M. 1995. Transecta de las Sierras Pampeanas de Córdoba a los 32°S. Revista de la Asociación Geológica Argentina 50, 6077.Google Scholar
Mirré, J.C. 1976. Descripción geológica de la Hoja 19e, Valle Fértil. Provincias de San Juan y La Rioja. Boletin de la Secretaría de Estado de Minería, Servicio Geológico Nacional, Argentina 147.Google Scholar
Nash, W. P.&Crecraft, H. R. 1985. Partition coefficients of trace elements in silicic magmas. Geochimica et Cosmochimica Acta 49, 2309–22.Google Scholar
Pankhurst, R. J., Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I.&Fanning, C. M. 1998. The Famatinian magmatic are in the central Sierras Pampeanas: an Early-to-Middle Ordovician continental arc on the Gondwana margin. In Pankhurst, R. J.&Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana, Special Publications of the Geological Society of London 142, 343–67.Google Scholar
Pascua, I. M. 1998. Las rocas igneas y metamórficas de la Sierra de Los Llanos, La Rioja, Argentina. Evolutión famatiniana de un sector del basamento pre-mesozóico andino. (Ph.D. Thesis, Departamento de Geología, Universidad de Salamanca, Spain).Google Scholar
Pérez, M. B., Rapela, C. W.&Baldo, E. G. 1996. Geología de los granitoides del sector septentrional de la Sierra Chica de Córdoba. Actas, XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos 5, 493506. Buenos Aires: Asociación Geológica Argentina.Google Scholar
Rapela, C W.&Pankhurst, R. J. 1996. Monzonite suites: the innermost Cordillcran plutonism of Patagonia. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 193203.Google Scholar
Rapela, C.W., Toselli, A., Heaman, L.&Saavedra, J. 1990. Granite plutonism of the Sierras Pampeanas: An inner cordilleran Paleozoic arc in the southern Andes. In Kay, S. M.&Rapela, C. W. (eds) Plutonism from Antarctica to Alaska, Geológical Society of America Special Papers 241, 7790.Google Scholar
Rapela, C. W., Coira, B., Toselli, A.&Saavedra, J. 1992. The Lower Paleozoic magmatism of southwestern Gondwana and the evolution of the Famatinian orogene. International Geology Review 34, 1081–142.Google Scholar
Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C. and Fanning, C. M. 1998. The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Córdoba. In Pankhurst, R. J&Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana, Special Publications of the Geological Society of London 142, 181217.Google Scholar
Saavedra, J., Pellitero-Pascual, E., Rossi de Toselli, J. N.&Toselli, A. J. 1992. Magmatic evolution of the Cerro Toro granite: a complex Ordovician pluton of northwestern Argentina. Journal of South American Earth Sciences 5, 2132.Google Scholar
Saavedra, J., Toselli, A.J., Rossi, J., Pellitero, E.&Durand, F. 1998. The Early Palaeozoic magmatic record of the Famatina system: a review. In Pankhurst, R. J&Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana, Special Publications of the Geological Society of London 142, 283–95.Google Scholar
Shaw, D. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34, 237–43.Google Scholar
Sims, J. P, Ireland, T. R., Camacho, A., Lyons, P., Pieters, P. E., Skirrow, R. G., Stuart-Smith, P. G.&Miró, R. 1998. U-Pb, ThPb and ArAr geochronology in the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In Pankhurst, R. J.&Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana, Special Publication of the Geological Society of London 142, 181217.Google Scholar
Springer, W.&Seck, H. A. 1997. Partial fusion of basic granulites at 5-15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology 127, 3045.Google Scholar
Sun, S.&McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions. In Saunders, A. D.&Norry, M. J. (eds) Magmatism in the Ocean Basins, Special Publications of the Geological Society of London 42, 313345.Google Scholar
Villaseca, C, Barbero, L.&Herreros, V. 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences 89, 113–19.Google Scholar