Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T13:10:41.344Z Has data issue: false hasContentIssue false

Characterization of a short-pulse high-power diode operated with anode effects

Published online by Cambridge University Press:  07 January 2016

Dan Cai*
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China
Lie Liu
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China
Jinchuan Ju
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China
Xuelong Zhao
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China
Hongyu Zhou
Affiliation:
College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China
Xiao Wang
Affiliation:
The PLA Unit 78010, Chengdu 610000, China
*
Address correspondence and reprint requests to: Dan Cai, College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073, China. E-mail: 263277440@163.com

Abstract

Usually, the high-power microwave (HPM) devices suffer from impedance collapse and cathode material degradation or even failure. When the intense electron beam bombards the anode (or named as collector in HPM device), an anode plasma could appear under certain conditions. In this case, the impedance collapse is caused by the expansions of the cathode and anode plasmas and diode current overshot caused by the bipolar flow. In this paper, characterization of a short-pulse high-power diode operated with anode effects with a dielectric fiber (velvet) cathode is discussed. The bipolar flow (or anode plasma) is indeed evident at beam power densities ~11 MW/cm2 and the pulse durations of ~50 ns. The analysis results of the deposit dose and thermal regime of the anode show that the electron stimulated desorption played an important role in the generation of anode plasma in this case. With the effect of anode plasma, the appearance of local cathode plasma flares (or nonuniform electron emission) is particularly detrimental for the diode closure. Micro-structure and elemental surface compositions of cathode are changed by the anode splashing, which is very harmful to the performance of cathode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, R.J., Booske, J.H., Luhmann, N.C. & Nusinovich, G.S. (2005). Modern Microwave and Millimeter-Wave Power Electronics. New York: IEEE, Wiley.CrossRefGoogle Scholar
Benford, J., Swegle, J.A. & Schamiloglu, E. (2007). High Power Microwaves. New York: Taylor and Francis.Google Scholar
Bugaev, S.P., Litvinov, E.A., Mesyats, G.A. & Proskurovskii, D.I. (1975). Explosive emission of electrons. Sov. Phys. Usp. 18, 51.Google Scholar
Child, C.D. (1911). Discharge from hot CaO. Phys. Rev. 32, 492.Google Scholar
Cai, D., Liu, L., Ju, J.C., Zhao, X.L. & Qiu, Y.F. (2014). Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation. Laser Part. Beams 32, 433.Google Scholar
Cuneo, M.E. (1999). The effect of electrode contamination, cleaning and conditioning on high-energy pulsed-power device performance. IEEE Trans. Dielectr. Electr. Insul. 6, 469.CrossRefGoogle Scholar
Cuneo, M.E., Menge, P.R., Hanson, D.L., Floler, W.E., Bernard, M.A., Ziska, G.R., Filuk, A.B., Pointon, T.D., Vesey, R.A., Welch, D.R., Bailey, J.E., Desjarlais, M.P., Lockner, T.R., Mehlhorn, T.A., Slutz, S.A. & Stark, M.A. (1997). Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1–10 TW. IEEE Trans. Plasma Sci. 25, 229.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42-a fast and easy-to-use modeling tool for scanning microanalysis users. Scanning 29, 92.Google Scholar
Fan, Y.W., Yuan, C.W., Zhong, H.H., Shu, T., Zhang, J.D., Yang, J.H., Yang, H.W., Wang, Y. & Luo, L. (2008 a). Recent progress of the improved MILO. Rev. Sci. Instrum. 79, 034703.Google Scholar
Fan, Y.W., Zhong, H.H., Li, Z.Q., Shu, T., Yang, H.W., Zhou, H., Yuan, C.W., Zhou, W.H. & Luo, L. (2008 b). Repetition rate operation of an improved magnetically insulated transmission line oscillator. Phys. Plasmas 15, 083102.Google Scholar
Fan, Y.W., Zhong, H.H., Li, Z.Q., Yuan, C.W., Shu, T., Yang, H.W., Wang, Y. & Luo, L. (2011). Investigation of a 1.2-GHz magnetically insulated transmission line oscillator. IEEE Trans. Plasma Sci. 39, 540.Google Scholar
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187.CrossRefGoogle Scholar
Hegeler, F., Friedman, M., Myers, M.C., Sethian, J.D. & Swanekamp, S.B. (2002). Reduction of edge emission in electron beam diodes. Phys. Plasmas 9, 4309.CrossRefGoogle Scholar
Halbritter, J. (1982). On conditioning: Reduction of secondary and RF field emission by electron, photo, or helium impact. J. Appl. Phys. 55, 6475.Google Scholar
Halbritter, J. (1983). Enhanced electron emission and its reduction by electron and ion impact. IEEE Trans. Electr. Insul. 18, 253.Google Scholar
Halbritter, J. (1985). On contamination on electrode surfaces and electric field limitations. IEEE Trans. Electr. Insul. 20, 671.CrossRefGoogle Scholar
Halbritter, J. (1986). Dynamical enhanced electron emission and discharges at contaminated surfaces. Appl. Phys. A 39, 49.Google Scholar
Ju, J.C., Liu, L. & Cai, D. (2014). Characterization of plasma expansion dynamics in a high power diode with a carbon-fiber-aluminum cathode. Appl. Phys. Lett. 104, 234102.CrossRefGoogle Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175.Google Scholar
Langmuir, I. (1911). The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 21, 419.Google Scholar
Li, L.M., Liu, L., Cheng, G.X., Xu, Q.F., Ge, X.J. & Wen, J.C. (2009). Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam. Laser Part. Beams 27, 497.Google Scholar
Li, L.M., Liu, C., Zhang, L., Wen, J.C., Wan, H. & Chu, P.K. (2014). Surface changes in FeeCreNi alloy bombarded by relativistic pulsed electron beam and associated mechanism. Vacuum 101, 136.Google Scholar
Litvinov, E.A. (1985). Theory of the explosive electron emission. IEEE Trans. Electr. Insul. 20, 683.Google Scholar
Miller, R.B. (1982). An Introduction to the Physics of Intense Charge Particle Beams. New York: Plenum.Google Scholar
Miller, R.B. (1998). Mechanism of explosive electron emission for dielectric fiber (velvet) cathode. J. Appl. Phys. 84, 3880.Google Scholar
Mesyats, G.A. (2000). Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc. Moscow: Nauka Publishers.Google Scholar
Mesyats, G.A., Korovin, S.D., Gunin, A.V., Gubanov, V.P., Stepchenko, A.S., Grishin, D.M., Landl, V.F., & Alekseenko, P.I. (2003). Repetitively pulsed high-current accelerators with transformer charging of forming lines. Laser Part. Beams 21, 197.Google Scholar
Markov, A.B. & Rotstein, V.P. (1997). Calculation and experimental determination of dimensions of hardening and tempering zones in quenched U7A steel irradiated with a pulsed electron beam. Nucl. Instrum. Methods Phys. Res. B 132, 79.Google Scholar
Roy, A., Menon, R., Mitra, S., Mitra, S., Kumar, S., Sharma, V., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2009). Shot to shot variation in perveance of the explosive emission electron beam diode. Phys. Plasmas 16, 053103.Google Scholar
Saveliev, Y.M., Kerr, B.A., Harbour, M.I., Douglas, S.C. & Sibbett, W. (2002). Operation of a relativistic rising-sun magnetron with cathodes of various diameters. IEEE Trans. Plasma Sci. 30, 938.Google Scholar
Saveliev, Y.M., Sibbett, W. & Parkes, D.M. (2003). Current conduction and plasma distribution on dielectric (velvet) explosive emission cathodes. J. Appl. Phys. 94, 5776.Google Scholar
Shiffler, D., Ruebush, M., Haworth, M., Umstattd, R., Lacour, M., Golby, K., Zagar, D. & Knowles, T. (2002 a). Carbon velvet field-emission cathode. Rev. Sci. Instrum. 73, 4358.Google Scholar
Shiffler, D., Ruebush, M., Zagar, D., Lacour, M., Sena, M., Golby, K., Haworth, M. & Umstattd, R. (2002b). Cathode and anode plasmas in short-pulse explosive field emission cathodes. J. Appl. Phys. 91, 5599.CrossRefGoogle Scholar
Shiffler, D., Zhou, O., Bower, C., Lacour, M. & Golby, K. (2004). A high-current, large-area, carbon nanotube cathode. IEEE Trans. Plasma Sci. 32, 2152.Google Scholar
Shiffler, D.A., Luginsland, J.W., Umstattd, R., Lacour, J.M., Golby, K., Haworth, M.D., Ruebush, M., Zagar, D., Gibbs, A. & Spencer, T.A. (2002 c). Effects of anode materials on the performance of explosive field emission diodes. IEEE Trans. Plasma Sci. 30, 1232.Google Scholar
Tarakanov, V.P. (1992). User's Manual for Code KARAT. Berkeley, VA: Berkeley Research Associates.Google Scholar
Yang, J. (2013). Research and application of carbon fiber velvet cathode. PhD thesis. Chang Sha: National University of Defense Technology.Google Scholar
Yang, J., Shu, T. & Wang, H. (2012 a). Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes. Phys. Plasmas 19, 072119.Google Scholar
Yang, J., Shu, T., Zhang, J., Fan, Y.W. & Zhu, J. (2012 b). Time-resolved plasma characteristics in a short-pulse high-power diode with a dielectric fiber (velvet) cathode. IEEE Trans. Plasma Sci. 40, 1696.Google Scholar
Yang, J., Shu, T., Zhang, J. & Fan, Y.W. (2013 a). Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes. J. Appl. Phys. 113, 043307.Google Scholar
Yang, J., Shu, T., Zhang, J. & Fan, Y.W. (2013 b). Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser Part. Beams 31, 129.Google Scholar
Zecca, A., Brusa, R.S., Naia, M.D., Paridaens, J., Pogrebnjak, A.D., Markov, A.B., Ozur, G.E., Proskurovsky, D.I. & Rotstein, V.P. (1993). Modification of the α–Fe surface using a low energy high current electron beam. Phys. Lett. A 175, 433.Google Scholar